Page 1 Gluconeogenesis + Evaluations 4/23/2003 Page 2 Gluconeogenesis + Evaluations 4/23/2003 Overview of Glucose Metabolism Page 3 Gluconeogenesis + Evaluations 4/23/2003 Overview of Glucose Metabolism Gluconeogenesis Gluconeogenesis is the process whereby precursors such as lactate, pyruvate, glycerol, and amino acids are converted to glucose. Fasting requires all the glucose to be synthesized from these non-carbohydrate precursors. Most precursors must enter the Krebs cycle at some point to be converted to oxaloacetate. Oxaloacetate is the starting material for gluconeogenesis Page 4 Gluconeogenesis + Evaluations 4/23/2003 Overview of Glucose Metabolism Gluconeogenesis Gluconeogenesis is the process whereby precursors such as lactate, pyruvate, glycerol, and amino acids are converted to glucose. Fasting requires all the glucose to be synthesized from these non-carbohydrate precursors. Most precursors must enter the Krebs cycle at some point to be converted to oxaloacetate. Oxaloacetate is the starting material for gluconeogenesis Page 5 Gluconeogenesis + Evaluations 4/23/2003 Overview of Glucose Metabolism Gluconeogenesis Gluconeogenesis is the process whereby precursors such as lactate, pyruvate, glycerol, and amino acids are converted to glucose. Fasting requires all the glucose to be synthesized from these non-carbohydrate precursors. Most precursors must enter the Krebs cycle at some point to be converted to oxaloacetate. Oxaloacetate is the starting material for gluconeogenesis Pyruvate is converted to oxaloacetate before being changed to Phosphoenolpyruvate 1. Pyruvate carboxylase catalyses the ATP-driven formation of oxaloacetate from pyruvate and CO 2 2. PEP carboxykinase (PEPCK) concerts oxaloacetate to PEP that uses GTP as a phosphorylating agent.Read More