The document Inequalities - Important Formulae of Number system - Free CAT Notes | EduRev is a part of the CAT Course Quantitative Aptitude (Quant).

All you need of CAT at this link: CAT

If a > b and c > 0,

⇒ a + c > b + c

⇒ a - c > b - c

⇒ ac > bc

⇒ a/c > b/c

If a, b ≥ 0, then a^{n} > b^{n} and 1/a^{n} < 1/b^{n}, where n is positive.

a < b and x > 0, then

a > b and x > 0, then

**Modular Inequalities**

|x- y| = |y - x|

|x. y| = |x| . |y|

|x+ y| < |x| + |y|

|x+ y| > |x| - |y|

**Quadratic Inequalities**

(x – a) (x – b) > 0 {a < b}

⇒ (x < a) U (x > b)

(x – a) (x – b) < 0 {a > b}

⇒ a < x < b

For any set of positive numbers: AM≥GM≥HM

⇒ (a_{1}+a_{2}+ ….+a_{n})/n ≥(a_{1}.a_{2}. …..a_{n})^{1/n}

If a and b are positive quantities, then

If a,b,c,d are positive quantities, then

⇒

⇒ a^{4} + b^{4} + c^{4} + d^{4} ≥ 4abcd

If a,b,c …. k are n positive quantities and m is a natural number, then

**EduRev's Tip:**

- For any positive integer n, 2 ≤
- a
^{m}b^{n}c^{p}……..will be greatest when - If a > b and both are natural numbers, then

⇒ a^{b}< b^{a}{Except 3^{2}> 2^{3}& 4^{2}= 2^{4}} - (n!)
^{2}≥ n^{n} - If the sum of two or more positive quantities is constant, their product is greatest when they are equal and if their product is constant then their sum is the least when the numbers are equal.

⇒ If x + y = k, then xy is greatest when x = y

⇒ If xy = k, then x + y is least when x = y

Offer running on EduRev: __Apply code STAYHOME200__ to get INR 200 off on our premium plan EduRev Infinity!

116 videos|131 docs|131 tests