Civil Engineering (CE)  >  Soil Mechanics  >  Introduction to Soil Mechanics

Introduction to Soil Mechanics Notes | Study Soil Mechanics - Civil Engineering (CE)

Document Description: Introduction to Soil Mechanics for Civil Engineering (CE) 2022 is part of Soil Mechanics preparation. The notes and questions for Introduction to Soil Mechanics have been prepared according to the Civil Engineering (CE) exam syllabus. Information about Introduction to Soil Mechanics covers topics like and Introduction to Soil Mechanics Example, for Civil Engineering (CE) 2022 Exam. Find important definitions, questions, notes, meanings, examples, exercises and tests below for Introduction to Soil Mechanics.

Introduction of Introduction to Soil Mechanics in English is available as part of our Soil Mechanics for Civil Engineering (CE) & Introduction to Soil Mechanics in Hindi for Soil Mechanics course. Download more important topics related with notes, lectures and mock test series for Civil Engineering (CE) Exam by signing up for free. Civil Engineering (CE): Introduction to Soil Mechanics Notes | Study Soil Mechanics - Civil Engineering (CE)
1 Crore+ students have signed up on EduRev. Have you?

Introduction

The term "soil" can have different meanings, depending upon the field in which it is considered.

To a geologist, it is the material in the relative thin zone of the Earth's surface within which roots occur, and which are formed as the products of past surface processes. The rest of the crust is grouped under the term "rock".

To a pedologist, it is the substance existing on the surface, which supports plant life.

To an engineer, it is a material that can be:

  • built on: foundations of buildings, bridges
  • built in: basements, culverts, tunnels
  • built with: embankments, roads, dams
  • supported: retaining walls

Soil Mechanics is a discipline of Civil Engineering involving the study of soil, its behaviour, and application as an engineering material.

Soil Mechanics is the application of laws of mechanics and hydraulics to engineering problems dealing with sediments and other unconsolidated accumulations of solid particles, which are produced by the mechanical and chemical disintegration of rocks, regardless of whether or not they contain an admixture of organic constituents.

The soil consists of a multiphase aggregation of solid particles, water, and air. This fundamental composition gives rise to unique engineering properties, and the description of its mechanical behavior requires some of the most classic principles of engineering mechanics.

Engineers are concerned with soil's mechanical properties: permeability, stiffness, and strength. These depend primarily on the nature of the soil grains, the current stress, the water content and unit weight.

 

Formation of soils

In the Earth's surface, rocks extend upto as much as 20 km depth. The major rock types are categorized as igneous, sedimentary, and metamorphic.

  • Igneous rocks: formed from crystalline bodies of cooled magma. 
  • Sedimentary rocks: formed from layers of cemented sediments.
  • Metamorphic rocks: formed by the alteration of existing rocks due to heat from igneous intrusions or pressure due to crustal movement.

Soils are formed from materials that have resulted from the disintegration of rocks by various processes of physical and chemical weathering. The nature and structure of a given soil depend on the processes and conditions that formed it:

  • Breakdown of parent rock: weathering, decomposition, erosion.
  • Transportation to site of final deposition: gravity, flowing water, ice, wind. 
  • Environment of final deposition: flood plain, river terrace, glacial moraine, lacustrine or marine.
  • Subsequent conditions of loading and drainage: little or no surcharge, heavy surcharge due to ice or overlying deposits, change from saline to freshwater, leaching, contamination.

All soils originate, directly or indirectly, from different rock types

Physical weathering reduces the size of the parent rock material, without any change in the original composition of the parent rock. Physical or mechanical processes taking place on the earth's surface include the actions of water, frost, temperature changes, wind, and ice. They cause disintegration and the products are mainly coarse soils.


The main processes involved are exfoliation, unloading, erosion, freezing, and thawing. The principal cause is climatic change. In exfoliation, the outer shell separates from the main rock. Heavy rain and wind cause erosion of the rock surface. Adverse temperature changes produce fragments due to the different thermal coefficients of rock minerals. The effect is more for freeze-thaw cycles.

Chemical weathering not only breaks up the material into smaller particles but alters the nature of the original parent rock itself. The main processes responsible are hydration, oxidation, and carbonation. New compounds are formed due to the chemical alterations.

Rainwater that comes in contact with the rock surface reacts to form hydrated oxides, carbonates, and sulphates. If there is a volume increase, the disintegration continues. Due to leaching, water-soluble materials are washed away and rocks lose their cementing properties.

Chemical weathering occurs in wet and warm conditions and consists of degradation by decomposition and/or alteration. The results of chemical weathering are generally fine soils with altered mineral grains.

The effects of weathering and transportation mainly determine the basic nature of the soil (size, shape, composition, and distribution of the particles).

The environment into which deposition takes place, and the subsequent geological events that take place there, determine the state of the soil (density, moisture content) and the structure or fabric of the soil (bedding, stratification, the occurrence of joints or fissures)

Transportation agencies can be combinations of gravity, flowing water or air, and moving ice. In water or air, the grains become sub-rounded or rounded, and the grain sizes get sorted so as to form poorly-graded deposits. In moving ice, grinding and crushing occur, size distribution becomes wider forming well-graded deposits.

In running water, soil can be transported in the form of suspended particles, or by rolling and sliding along the bottom. Coarser particles settle when a decrease in velocity occurs, whereas finer particles are deposited further downstream. In still water, horizontal layers of successive sediments are formed, which may change with time, even seasonally or daily.

Wind can erode, transport and deposit fine-grained soils. Wind-blown soil is generally uniformly-graded.

A glacier moves slowly but scours the bedrock surface over which it passes.

Gravity transports materials along slopes without causing many alterations.

The document Introduction to Soil Mechanics Notes | Study Soil Mechanics - Civil Engineering (CE) is a part of the Civil Engineering (CE) Course Soil Mechanics.
All you need of Civil Engineering (CE) at this link: Civil Engineering (CE)

Related Searches

Introduction to Soil Mechanics Notes | Study Soil Mechanics - Civil Engineering (CE)

,

MCQs

,

mock tests for examination

,

Introduction to Soil Mechanics Notes | Study Soil Mechanics - Civil Engineering (CE)

,

pdf

,

practice quizzes

,

past year papers

,

Summary

,

Viva Questions

,

Previous Year Questions with Solutions

,

ppt

,

Exam

,

Introduction to Soil Mechanics Notes | Study Soil Mechanics - Civil Engineering (CE)

,

Important questions

,

Objective type Questions

,

Semester Notes

,

Extra Questions

,

study material

,

shortcuts and tricks

,

Sample Paper

,

Free

,

video lectures

;