Airforce X Y / Indian Navy SSR Exam  >  Airforce X Y / Indian Navy SSR Notes  >  Mathematics for Airmen Group X  >  Introduction to the Principle of Mathematical Induction

Introduction to the Principle of Mathematical Induction | Mathematics for Airmen Group X - Airforce X Y / Indian Navy SSR PDF Download

Introduction to Mathematical Induction

Mathematical thinking is essential, as it helps in better understanding of problems thus letting us reach to solutions in a better way. Deductive reasoning and mathematical thinking are connected, as the former forms the basis of the latter. Deductive reasoning further is based on logic and understanding. See the example given underneath:
a. The German shepherd is a dog.
b. All dogs have an immaculate sense of hearing.
c. The German shepherd has an immaculate sense of hearing.

Now, if statements a) and b) are true then c) is also true. This theory of reasoning can be used mathematically as well, let’s see how?
a. Sixteen is divisible by Two.
b. Any number divisible by two is an even number.
c. Sixteen is an even number.

From the above example, we get a hint of deduction.

Introduction to the Principle of Mathematical Induction | Mathematics for Airmen Group X - Airforce X Y / Indian Navy SSR
The deduction is the statement that needs to be proven and is generally called a theorem in mathematics. With the help of deductive steps, we prove or disprove theorems also called as conjectures that let us establish mathematical facts and principles. In a nutshell, the deduction is the application of general cases to a particular case.

Inductive reasoning is the opposite of deductive reasoning. Inductive reasoning depends on the study of a particular case and observing incidences leading to that case. This implies that in inductive reasoning we observe each and every case that lets us reach conclusions for a particular case.

Reasoning through induction forms the basis of scientific reasoning and if generally used in mathematics. Since collecting and analyzing information is a norm in scientific reasoning, mathematical induction also uses the same norms to generalize particular facts or cases.

The principle of mathematical induction is used in algebra or other streams of mathematics that involve the formulation of results or statements in terms of “n”. To prove the basic principle behind ‘n’, which is a positive integer, we use a set of well-established and well-suited principles in a specific format. The techniques used to prove statements with regard to “n” are known as principles of mathematical induction.


The Principle of Mathematical Induction
As a mathematical technique of proving things, mathematical induction is essentially used to prove the property of natural numbers (n). According to the principle of mathematical induction, a property X(n) holds to be same for all natural numbers, 0,1,2,3…… n. Let’s consider a given statement X(n) involving natural number n, so that
a. The statement is true for n = 1 i.e., X(1) is true, and
b. If the statement is true for n=k, where k is a positive integer, then the statement is also true for all cases of n= k+1 i.e., X(k) leads to the truth of X(k+1).

This means that X(n) is true for all the natural numbers, n.
Property a) mentioned above is simply a statement of a fact. In situations, where the statement is also true for all the cases of n≥5, then the step a) shall start from n=5 and we shall hence verify the result for n=5, i.e., X(5).

Property b) is a conditional property as it does not confirm that the given statement is true for n=k, but if it is true for n=k then it shall also be true for n=k+1.
Therefore to prove a property we need to first prove the conditional proposition. Proving a conditional proposition is referred to as inductive step of a theorem. The presumption that the given statement, is true, in this case, n=k is termed as the inductive hypothesis.

Example
Mathematics follows a pattern, one of the many patterns is given below
1 = 12 = 1
4 = 22= 1 + 3
9 = 32 = 1 + 3 + 5
16 = 42 = 1 + 3 + 5 + 7
25 = 52 = 1 + 3 + 5 + 7 + 9

From the above pattern example, we come to a conclusion that the square of the second natural number is equal to the sum of first two odd natural numbers. Likewise, the sum of first three odd natural numbers is equal to the square of the third natural number. From the above pattern we conclude that,
1 + 3 + 5 + 7 + … + (2n – 1) = n2 , or the square of n is equal to the sum of first n odd natural numbers. Now let us write this as,
X(n) = 1 + 3 + 5 + 7 + 9 +…….+ (2n-1) = n2

With the help of the principle of mathematical induction, we need to prove that X(n) is true for all the values of n. The first step in this process is to prove the value X(1) is true. This first step is called the base step or basic step, as it forms the basis of mathematical induction. 1 = 12 , X(1) therefore is true.
The next step following the base is called the inductive step. In this step we suppose that X(m) is true for any positive integer m, we also need to prove that X(m+1) is true. Since X(m) is true we have,
1 + 3 + 5 + 7…. + (2m-1) = m2        (1)
Now consider, 1 + 3 + 5 + 7 +….+ (2m-1) + {2(m+1)-1}           (2)
Using (1), we get
= m2 + (2m + 1) = (m + 1)2

Therefore, X(m + 1) is also true thus completing our inductive proof step. This gives us that X(n) is true for all the natural numbers. Through the above example, we have proved that X(n) is true for all natural numbers n.

Solved Example For You
Question: Prove that m≥ 1 prove that, 12+ 22 + 32 +42 +……+ m2 = m(m + 1)(2m + 1)/6
Solution: Let the given statement be X(m), i.e.,
X(m) = 12+ 22 + 32 +42 +……+m2 = m(m + 1) (2m + 1) / 6
for m= 1 , X(1) = 1(1 + 1) (2 × 1 + 1) /6
= 1 × 2 × 3 / 6 = 1, which is true.

Now, lets take a positive integer, p, and assume X(p) to be true i.e.,
12+ 22 + 32 +42 +……+p2 = p(p+1) (2p+1) / 6       (1)
We shall now prove that X(p+1) is also true, so now we have,


12+ 22 + 32 +42 +……+p2  + (p+1)2

= p(p+1)(2p+1) / 6 + (p+1)2

= p(p+1)(2p+1)+6(p+1)2 / 6

= (p+1) {( 2p2 + p) + 6(p+1)} /6

= (p+1) (2p2 +7p+6)/6

= (p+1) (p+1+1) {2(p+1) +1 /6

Thus X(p + 1) is true, whenever X(p) is true for all natural numbers.


Principle of Mathematical Induction Examples
Question 1 :By the principle of mathematical induction, prove that, for n ≥ 1
1.2 + 2.3 + 3.4 + · · · + n.(n + 1) = n(n + 1)(n + 2)/3
Solution :
Let p(n) =  1.2 + 2.3 + 3.4 + · · · + n.(n + 1) = n(n + 1)(n + 2)/3
Step 1 :
put n = 1
p(1)  =  1.2 + 2.3 + 3.4 + · · · + 1.(1 + 1) = 1(1 + 1)(1 + 2)/3
1  =  1
Hence p(1) is true.

Step 2 :
Let us assume that the statement is true for n = k
p(k) = 1.2 + 2.3 + · · · + k.(k + 1) = k(k + 1)(k + 2)/3  ----(1)  
We need to show that P(k + 1) is true. Consider,

Step 3 :
Let us assume that the statement is true for n = k + 1
p(k+1)
1.2 + 2.3 + · · · k(k + 1) + (k+1).(k + 2) = (k+1)(k+2)(k+3)/3
By applying (1) in this step, we get
Introduction to the Principle of Mathematical Induction | Mathematics for Airmen Group X - Airforce X Y / Indian Navy SSR
Hence, by the principle of mathematical induction for n ≥ 1
1.2 + 2.3 + 3.4 + · · · + n.(n + 1) = n(n + 1)(n + 2)/3

Question 2 : Using the Mathematical induction, show that for any natural number n ≥ 2
(1 − 1/22) (1 − 1/32)(1 − 1/42) ...............(1 − 1/n2) =(n + 1)/2n 
Solution :
Let p(n)  =  (1 − 1/22) (1 − 1/32)(1 − 1/42) ...............(1 − 1/n2) 
Step 1 :
(1 − 1/22) (1 − 1/32)(1 − 1/42) ...............(1 − 1/n2) =(n + 1)/2n 
put n = 2
p(2)  =  (3/4) =  3/4
Hence p(2) is true.

Step 2 :
Let us assume that the statement is true for n = k
(1 − 1/22) (1 − 1/32) ..................(1 − 1/k2) =(k + 1)/2k  --(1)   
We need to show that P(k + 1) is true. Consider,

Step 3 :
Let us assume that the statement is true for n = k + 1
p(k+1)
(1 − 1/22) (1 − 1/32) ................(1 − 1/k2) + (1 − 1/(k+1)2) 
=  (k + 2)/2(k + 1)
By applying (1) in this step, we get
Introduction to the Principle of Mathematical Induction | Mathematics for Airmen Group X - Airforce X Y / Indian Navy SSR
(k + 2)/2(k + 1)  =  (k + 2)/2(k + 1)Hence, by the principle of mathematical induction natural number n ≥ 2,
(1 − 1/22) (1 − 1/32)(1 − 1/42) ...............(1 − 1/n2) =(n + 1)/2n 

The document Introduction to the Principle of Mathematical Induction | Mathematics for Airmen Group X - Airforce X Y / Indian Navy SSR is a part of the Airforce X Y / Indian Navy SSR Course Mathematics for Airmen Group X.
All you need of Airforce X Y / Indian Navy SSR at this link: Airforce X Y / Indian Navy SSR
149 videos|192 docs|197 tests

FAQs on Introduction to the Principle of Mathematical Induction - Mathematics for Airmen Group X - Airforce X Y / Indian Navy SSR

1. What is the principle of mathematical induction?
Ans. The principle of mathematical induction is a proof technique used to establish statements for all natural numbers. It consists of two steps: the base step, where the statement is proven for the initial value (usually 1), and the inductive step, where the statement is proven for any arbitrary value assuming it holds for the previous value.
2. How does mathematical induction work?
Ans. Mathematical induction works by proving a statement for a base case, typically the initial value of the set of numbers being considered. Then, it assumes the statement holds for an arbitrary value and proves it for the next value using this assumption. By repeating this process, the statement is proven to hold for all numbers in the set.
3. Can you provide an example of mathematical induction?
Ans. Sure! Let's consider the statement: "For all positive integers n, 1 + 2 + 3 + ... + n = n(n+1)/2." - Base step: For n = 1, the left-hand side is 1 and the right-hand side is (1(1+1))/2 = 1. So, the statement holds for n = 1. - Inductive step: Assume the statement holds for an arbitrary positive integer k. We need to prove it holds for k+1. - By the assumption, 1 + 2 + 3 + ... + k = k(k+1)/2. - Adding (k+1) to both sides, we get 1 + 2 + 3 + ... + k + (k+1) = k(k+1)/2 + (k+1). - Simplifying the right-hand side, we have (k^2 + k + 2k + 2)/2 = (k^2 + 3k + 2)/2 = (k+1)(k+2)/2. - Therefore, the statement holds for k+1. - Since the statement holds for n = 1 and is proven to hold for any k assuming it holds for k, it is true for all positive integers n by mathematical induction.
4. What are the key steps in applying mathematical induction?
Ans. The key steps in applying mathematical induction are: 1. Base step: Prove the statement for the initial value (usually 1). 2. Inductive step: Assume the statement holds for an arbitrary value k and prove it holds for k+1. 3. Conclusion: By the principle of mathematical induction, the statement is true for all values in the set.
5. How is mathematical induction different from other proof techniques?
Ans. Mathematical induction is different from other proof techniques, such as direct proof or proof by contradiction, because it proves a statement for an infinite number of cases (usually natural numbers). It relies on the concept of assuming the statement holds for a particular value and proving it for the next value. This technique is particularly useful when dealing with statements that involve a pattern or recurrence.
149 videos|192 docs|197 tests
Download as PDF

Top Courses for Airforce X Y / Indian Navy SSR

Related Searches

ppt

,

Semester Notes

,

Previous Year Questions with Solutions

,

Sample Paper

,

Summary

,

shortcuts and tricks

,

Important questions

,

Viva Questions

,

study material

,

Introduction to the Principle of Mathematical Induction | Mathematics for Airmen Group X - Airforce X Y / Indian Navy SSR

,

Introduction to the Principle of Mathematical Induction | Mathematics for Airmen Group X - Airforce X Y / Indian Navy SSR

,

Extra Questions

,

pdf

,

MCQs

,

practice quizzes

,

Free

,

past year papers

,

Objective type Questions

,

Introduction to the Principle of Mathematical Induction | Mathematics for Airmen Group X - Airforce X Y / Indian Navy SSR

,

mock tests for examination

,

Exam

,

video lectures

;