JEE Exam  >  JEE Notes  >  Mock Tests for JEE Main and Advanced 2025  >  JEE Main 2024 January 27 Shift 2 Paper & Solutions

JEE Main 2024 January 27 Shift 2 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025 PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


  
            
  
 
 
 
 
 
 
 
 
SECTION-A 
1. Considering only the principal values of inverse 
trigonometric functions, the number of positive 
real values of x satisfying 
11
tan (x) tan (2x)
4
??
?
?? 
is :
 
 (1) More than 2 
 (2) 1 
 (3) 2 
 (4) 0 
Ans. (2) 
Sol. 
11
tan x tan 2x
4
??
?
?? ; x > 0 
 ?
11
tan 2x tan x
4
??
?
?? 
 Taking tan both sides 
 ?
1x
2x
1x
?
?
?
 
 
2
2x 3x 1 0 ? ? ? ? 
 
3 9 8 3 17
x
88
? ? ? ? ?
?? 
 Only possible 
3 17
x
8
??
? 
2. Consider the function f :(0,2) R ? defined by 
x2
f (x)
2x
?? and the function g(x) defined by 
min{f (t)}, 0 t x and 0 x 1
g(x) 3
x, 1 x 2
2
? ? ? ? ?
?
?
?
? ? ?
?
?
. Then 
 (1) g is continuous but not differentiable at x = 1 
 (2) g is not continuous for all x (0,2) ? 
 (3) g is neither continuous nor differentiable at x = 1 
 (4) g is continuous and differentiable for all x (0,2) ? 
Ans. (1) 
Sol. f :(0,2) R ? ; 
x2
f (x)
2x
?? 
 
12
f (x)
2x
?
? ?? 
 f (x) ? is decreasing in domain.  
 
2
2
x
f(x)
 
 
x2
0 x 1
2x
g(x)
3
x 1 x 2
2
?
? ? ?
?
?
?
?
? ? ?
?
 
 
1 2 O
g(x)
  
3. Let the image of the point (1, 0, 7) in the line 
x y 1 z 2
1 2 3
??
?? be the point ( ?, ?, ?). Then 
which one of the following points lies on the line 
passing through ( ?, ?, ?) and making angles 
2
3
?
 
and 
3
4
?
 with y-axis and z-axis respectively and an 
acute angle with x-axis ? 
 (1) 
? ?
1, 2,1 2 ?? 
 (2) 
? ?
1,2,1 2 ? 
 (3) 
? ?
3,4,3 2 2 ? 
 (4) 
? ?
3, 4,3 2 2 ?? 
Ans. (3) 
Page 2


  
            
  
 
 
 
 
 
 
 
 
SECTION-A 
1. Considering only the principal values of inverse 
trigonometric functions, the number of positive 
real values of x satisfying 
11
tan (x) tan (2x)
4
??
?
?? 
is :
 
 (1) More than 2 
 (2) 1 
 (3) 2 
 (4) 0 
Ans. (2) 
Sol. 
11
tan x tan 2x
4
??
?
?? ; x > 0 
 ?
11
tan 2x tan x
4
??
?
?? 
 Taking tan both sides 
 ?
1x
2x
1x
?
?
?
 
 
2
2x 3x 1 0 ? ? ? ? 
 
3 9 8 3 17
x
88
? ? ? ? ?
?? 
 Only possible 
3 17
x
8
??
? 
2. Consider the function f :(0,2) R ? defined by 
x2
f (x)
2x
?? and the function g(x) defined by 
min{f (t)}, 0 t x and 0 x 1
g(x) 3
x, 1 x 2
2
? ? ? ? ?
?
?
?
? ? ?
?
?
. Then 
 (1) g is continuous but not differentiable at x = 1 
 (2) g is not continuous for all x (0,2) ? 
 (3) g is neither continuous nor differentiable at x = 1 
 (4) g is continuous and differentiable for all x (0,2) ? 
Ans. (1) 
Sol. f :(0,2) R ? ; 
x2
f (x)
2x
?? 
 
12
f (x)
2x
?
? ?? 
 f (x) ? is decreasing in domain.  
 
2
2
x
f(x)
 
 
x2
0 x 1
2x
g(x)
3
x 1 x 2
2
?
? ? ?
?
?
?
?
? ? ?
?
 
 
1 2 O
g(x)
  
3. Let the image of the point (1, 0, 7) in the line 
x y 1 z 2
1 2 3
??
?? be the point ( ?, ?, ?). Then 
which one of the following points lies on the line 
passing through ( ?, ?, ?) and making angles 
2
3
?
 
and 
3
4
?
 with y-axis and z-axis respectively and an 
acute angle with x-axis ? 
 (1) 
? ?
1, 2,1 2 ?? 
 (2) 
? ?
1,2,1 2 ? 
 (3) 
? ?
3,4,3 2 2 ? 
 (4) 
? ?
3, 4,3 2 2 ?? 
Ans. (3) 
 
 
 
 
 
Sol. 
1
x y 1 z 2
L
1 2 3
??
? ? ? ? ? 
  
 M( ,1 2 ,2 3 ) ? ? ? ? ? 
 
ˆ ˆ ˆ
PM ( 1)i (1 2 )j (3 5)k ? ? ? ? ? ? ? ? ? 
 PM is perpendicular to line L
1
 
 PM.b 0 ?     (
ˆ ˆ ˆ
b i 2j 3k ? ? ? ) 
 1 4 2 9 15 0 ? ? ? ? ? ? ? ? ? ? 
 14 14 1 ? ? ? ? ? 
 M (1,3,5) ?? 
 Q 2M P ?? [M is midpoint of P & Q ] 
 
ˆ ˆ ˆ ˆ ˆ
Q 2i 6j 10k i 7k ? ? ? ? ? 
 
ˆ ˆ ˆ
Q i 6j 3k ? ? ? 
 ( , , ) (1,6,3) ? ? ? ? ? 
 Required line having direction cosine (l, m, n) 
 
2 2 2
1 ? ? ? l m n 
 
2 2
2
11
1
2 2
?? ??
? ? ? ? ? ?
?? ??
?? ??
l 
 
2
1
4
? l 
 
1
2
?? l [Line make acute angle with x-axis] 
 Equation of line passing through (1, 6, 3) will be 
 
1 1 1
ˆ ˆ ˆ ˆ ˆ ˆ
r (i 6j 3k) i j k
22 2
??
? ? ? ? ? ? ?
??
??
 
 Option (3) satisfying for ? = 4 
4. Let R be the interior region between the lines 
3x y 1 0 ? ? ? and x 2y 5 0 ? ? ? containing the 
origin. The set of all values of a, for which the 
points (a
2
, a + 1) lie in R, is : 
 (1) 
1
( 3, 1) ,1
3
??
? ? ? ?
??
??
 
 (2) 
1
( 3,0) ,1
3
??
??
??
??
 
 (3) 
2
( 3,0) ,1
3
??
??
??
??
 
 (4) 
1
( 3, 1) ,1
3
??
? ? ?
??
??
 
Ans. (2) 
Sol. P(a
2
, a + 1) 
 L
1
 = 3x – y + 1 = 0 
 Origin and P lies same side w.r.t. L
1
 
 ?L
1
(0) . L
1
(P) > 0 
 ? 3(a
2
) – (a + 1) + 1 > 0 
 
y
O
(0,0)
L : x+2y–5=0
2
x
L : 3x–y+1=0
1
 
 ?3a
2
 – a > 0 
 
1
a ( ,0) ,
3
??
? ? ? ? ?
??
??
…………….(1) 
 Let L
2
 : x + 2y – 5 = 0 
 Origin and P lies same side w.r.t. L
2
 
 ?
22
L (0).L (P) 0 ? 
 
2
a 2(a 1) 5 0 ? ? ? ? ? 
 ?
2
a 2a 3 0 ? ? ? 
 ? (a 3)(a 1) 0 ? ? ? 
 ? a ( 3,1) ?? …………….(2) 
 Intersection of (1) and (2) 
 
1
a ( 3,0) ,1
3
??
? ? ?
??
??
 
Page 3


  
            
  
 
 
 
 
 
 
 
 
SECTION-A 
1. Considering only the principal values of inverse 
trigonometric functions, the number of positive 
real values of x satisfying 
11
tan (x) tan (2x)
4
??
?
?? 
is :
 
 (1) More than 2 
 (2) 1 
 (3) 2 
 (4) 0 
Ans. (2) 
Sol. 
11
tan x tan 2x
4
??
?
?? ; x > 0 
 ?
11
tan 2x tan x
4
??
?
?? 
 Taking tan both sides 
 ?
1x
2x
1x
?
?
?
 
 
2
2x 3x 1 0 ? ? ? ? 
 
3 9 8 3 17
x
88
? ? ? ? ?
?? 
 Only possible 
3 17
x
8
??
? 
2. Consider the function f :(0,2) R ? defined by 
x2
f (x)
2x
?? and the function g(x) defined by 
min{f (t)}, 0 t x and 0 x 1
g(x) 3
x, 1 x 2
2
? ? ? ? ?
?
?
?
? ? ?
?
?
. Then 
 (1) g is continuous but not differentiable at x = 1 
 (2) g is not continuous for all x (0,2) ? 
 (3) g is neither continuous nor differentiable at x = 1 
 (4) g is continuous and differentiable for all x (0,2) ? 
Ans. (1) 
Sol. f :(0,2) R ? ; 
x2
f (x)
2x
?? 
 
12
f (x)
2x
?
? ?? 
 f (x) ? is decreasing in domain.  
 
2
2
x
f(x)
 
 
x2
0 x 1
2x
g(x)
3
x 1 x 2
2
?
? ? ?
?
?
?
?
? ? ?
?
 
 
1 2 O
g(x)
  
3. Let the image of the point (1, 0, 7) in the line 
x y 1 z 2
1 2 3
??
?? be the point ( ?, ?, ?). Then 
which one of the following points lies on the line 
passing through ( ?, ?, ?) and making angles 
2
3
?
 
and 
3
4
?
 with y-axis and z-axis respectively and an 
acute angle with x-axis ? 
 (1) 
? ?
1, 2,1 2 ?? 
 (2) 
? ?
1,2,1 2 ? 
 (3) 
? ?
3,4,3 2 2 ? 
 (4) 
? ?
3, 4,3 2 2 ?? 
Ans. (3) 
 
 
 
 
 
Sol. 
1
x y 1 z 2
L
1 2 3
??
? ? ? ? ? 
  
 M( ,1 2 ,2 3 ) ? ? ? ? ? 
 
ˆ ˆ ˆ
PM ( 1)i (1 2 )j (3 5)k ? ? ? ? ? ? ? ? ? 
 PM is perpendicular to line L
1
 
 PM.b 0 ?     (
ˆ ˆ ˆ
b i 2j 3k ? ? ? ) 
 1 4 2 9 15 0 ? ? ? ? ? ? ? ? ? ? 
 14 14 1 ? ? ? ? ? 
 M (1,3,5) ?? 
 Q 2M P ?? [M is midpoint of P & Q ] 
 
ˆ ˆ ˆ ˆ ˆ
Q 2i 6j 10k i 7k ? ? ? ? ? 
 
ˆ ˆ ˆ
Q i 6j 3k ? ? ? 
 ( , , ) (1,6,3) ? ? ? ? ? 
 Required line having direction cosine (l, m, n) 
 
2 2 2
1 ? ? ? l m n 
 
2 2
2
11
1
2 2
?? ??
? ? ? ? ? ?
?? ??
?? ??
l 
 
2
1
4
? l 
 
1
2
?? l [Line make acute angle with x-axis] 
 Equation of line passing through (1, 6, 3) will be 
 
1 1 1
ˆ ˆ ˆ ˆ ˆ ˆ
r (i 6j 3k) i j k
22 2
??
? ? ? ? ? ? ?
??
??
 
 Option (3) satisfying for ? = 4 
4. Let R be the interior region between the lines 
3x y 1 0 ? ? ? and x 2y 5 0 ? ? ? containing the 
origin. The set of all values of a, for which the 
points (a
2
, a + 1) lie in R, is : 
 (1) 
1
( 3, 1) ,1
3
??
? ? ? ?
??
??
 
 (2) 
1
( 3,0) ,1
3
??
??
??
??
 
 (3) 
2
( 3,0) ,1
3
??
??
??
??
 
 (4) 
1
( 3, 1) ,1
3
??
? ? ?
??
??
 
Ans. (2) 
Sol. P(a
2
, a + 1) 
 L
1
 = 3x – y + 1 = 0 
 Origin and P lies same side w.r.t. L
1
 
 ?L
1
(0) . L
1
(P) > 0 
 ? 3(a
2
) – (a + 1) + 1 > 0 
 
y
O
(0,0)
L : x+2y–5=0
2
x
L : 3x–y+1=0
1
 
 ?3a
2
 – a > 0 
 
1
a ( ,0) ,
3
??
? ? ? ? ?
??
??
…………….(1) 
 Let L
2
 : x + 2y – 5 = 0 
 Origin and P lies same side w.r.t. L
2
 
 ?
22
L (0).L (P) 0 ? 
 
2
a 2(a 1) 5 0 ? ? ? ? ? 
 ?
2
a 2a 3 0 ? ? ? 
 ? (a 3)(a 1) 0 ? ? ? 
 ? a ( 3,1) ?? …………….(2) 
 Intersection of (1) and (2) 
 
1
a ( 3,0) ,1
3
??
? ? ?
??
??
 
 
 
 
 
 
 
5. The 20
th
 term from the end of the progression 
1 1 3 1
20,19 ,18 ,17 ,...., 129
4 2 4 4
? is :- 
 (1) –118 
 (2) –110 
 (3) –115 
 (4) –100 
Ans. (3) 
Sol. 
1 1 3 1
20,19 ,18 ,17 ,......, 129
4 2 4 4
? 
 This is A.P. with common difference  
 
1
13
d1
44
? ? ? ? ? 
 
11
129 ,..............,19 ,20
44
? 
 This is also A.P. 
1
a 129
4
?? and 
3
d
4
? 
 Required term =  
 
13
129 (20 1)
44
??
? ? ?
??
??
 
 
13
129 15 115
44
? ? ? ? ? ? ? 
6. Let 
1
f : R R
2
? ??
??
??
??
 and 
5
g : R R
2
? ??
??
??
??
 be 
defined as 
2x 3
f (x)
2x 1
?
?
?
 and 
| x | 1
g(x)
2x 5
?
?
?
. Then 
the domain of the function fog is : 
 (1) 
5
R
2
??
??
??
??
 
 (2) R 
 (3) 
7
R
4
??
??
??
??
 
 (4) 
57
R,
24
??
? ? ?
??
??
 
Ans. (1) 
Sol. 
2x 3 1
f (x) ;x
2x 1 2
?
? ? ?
?
 
 
| x | 1 5
g(x) ,x
2x 5 2
?
? ? ?
?
 
 Domain of f(g(x)) 
 
2g(x) 3
f (g(x))
2g(x) 1
?
?
?
 
 
5
x
2
?? and 
| x | 1 1
2x 5 2
?
??
?
 
 
5
xR
2
??
? ? ?
??
??
 and xR ? 
 ? Domain will be 
5
R
2
??
??
??
??
 
7. For 0 < a < 1, the value of the integral 
2
0
dx
1 2a cos x a
?
??
?
 is : 
 (1) 
2
2
a
?
??
 
 (2) 
2
2
a
?
??
 
 (3) 
2
1a
?
?
 
 (4) 
2
1a
?
?
 
Ans. (3) 
Sol. 
2
0
dx
I ; 0 a 1
1 2a cos x a
?
? ? ?
??
?
 
 
2
0
dx
I
1 2a cos x a
?
?
??
?
   
 
/2
2
2 2 2 2
0
2(1 a )
2I 2 dx
(1 a ) 4a cos x
?
?
?
??
?
 
 
/2
22
2 2 2 2
0
2(1 a ).sec x
I dx
(1 a ) .sec x 4a
?
?
??
??
?
 
 
/2
22
2 2 2 2 2
0
2.(1 a ).sec x
I dx
(1 a ) .tan x (1 a )
?
?
??
? ? ?
?
 
Page 4


  
            
  
 
 
 
 
 
 
 
 
SECTION-A 
1. Considering only the principal values of inverse 
trigonometric functions, the number of positive 
real values of x satisfying 
11
tan (x) tan (2x)
4
??
?
?? 
is :
 
 (1) More than 2 
 (2) 1 
 (3) 2 
 (4) 0 
Ans. (2) 
Sol. 
11
tan x tan 2x
4
??
?
?? ; x > 0 
 ?
11
tan 2x tan x
4
??
?
?? 
 Taking tan both sides 
 ?
1x
2x
1x
?
?
?
 
 
2
2x 3x 1 0 ? ? ? ? 
 
3 9 8 3 17
x
88
? ? ? ? ?
?? 
 Only possible 
3 17
x
8
??
? 
2. Consider the function f :(0,2) R ? defined by 
x2
f (x)
2x
?? and the function g(x) defined by 
min{f (t)}, 0 t x and 0 x 1
g(x) 3
x, 1 x 2
2
? ? ? ? ?
?
?
?
? ? ?
?
?
. Then 
 (1) g is continuous but not differentiable at x = 1 
 (2) g is not continuous for all x (0,2) ? 
 (3) g is neither continuous nor differentiable at x = 1 
 (4) g is continuous and differentiable for all x (0,2) ? 
Ans. (1) 
Sol. f :(0,2) R ? ; 
x2
f (x)
2x
?? 
 
12
f (x)
2x
?
? ?? 
 f (x) ? is decreasing in domain.  
 
2
2
x
f(x)
 
 
x2
0 x 1
2x
g(x)
3
x 1 x 2
2
?
? ? ?
?
?
?
?
? ? ?
?
 
 
1 2 O
g(x)
  
3. Let the image of the point (1, 0, 7) in the line 
x y 1 z 2
1 2 3
??
?? be the point ( ?, ?, ?). Then 
which one of the following points lies on the line 
passing through ( ?, ?, ?) and making angles 
2
3
?
 
and 
3
4
?
 with y-axis and z-axis respectively and an 
acute angle with x-axis ? 
 (1) 
? ?
1, 2,1 2 ?? 
 (2) 
? ?
1,2,1 2 ? 
 (3) 
? ?
3,4,3 2 2 ? 
 (4) 
? ?
3, 4,3 2 2 ?? 
Ans. (3) 
 
 
 
 
 
Sol. 
1
x y 1 z 2
L
1 2 3
??
? ? ? ? ? 
  
 M( ,1 2 ,2 3 ) ? ? ? ? ? 
 
ˆ ˆ ˆ
PM ( 1)i (1 2 )j (3 5)k ? ? ? ? ? ? ? ? ? 
 PM is perpendicular to line L
1
 
 PM.b 0 ?     (
ˆ ˆ ˆ
b i 2j 3k ? ? ? ) 
 1 4 2 9 15 0 ? ? ? ? ? ? ? ? ? ? 
 14 14 1 ? ? ? ? ? 
 M (1,3,5) ?? 
 Q 2M P ?? [M is midpoint of P & Q ] 
 
ˆ ˆ ˆ ˆ ˆ
Q 2i 6j 10k i 7k ? ? ? ? ? 
 
ˆ ˆ ˆ
Q i 6j 3k ? ? ? 
 ( , , ) (1,6,3) ? ? ? ? ? 
 Required line having direction cosine (l, m, n) 
 
2 2 2
1 ? ? ? l m n 
 
2 2
2
11
1
2 2
?? ??
? ? ? ? ? ?
?? ??
?? ??
l 
 
2
1
4
? l 
 
1
2
?? l [Line make acute angle with x-axis] 
 Equation of line passing through (1, 6, 3) will be 
 
1 1 1
ˆ ˆ ˆ ˆ ˆ ˆ
r (i 6j 3k) i j k
22 2
??
? ? ? ? ? ? ?
??
??
 
 Option (3) satisfying for ? = 4 
4. Let R be the interior region between the lines 
3x y 1 0 ? ? ? and x 2y 5 0 ? ? ? containing the 
origin. The set of all values of a, for which the 
points (a
2
, a + 1) lie in R, is : 
 (1) 
1
( 3, 1) ,1
3
??
? ? ? ?
??
??
 
 (2) 
1
( 3,0) ,1
3
??
??
??
??
 
 (3) 
2
( 3,0) ,1
3
??
??
??
??
 
 (4) 
1
( 3, 1) ,1
3
??
? ? ?
??
??
 
Ans. (2) 
Sol. P(a
2
, a + 1) 
 L
1
 = 3x – y + 1 = 0 
 Origin and P lies same side w.r.t. L
1
 
 ?L
1
(0) . L
1
(P) > 0 
 ? 3(a
2
) – (a + 1) + 1 > 0 
 
y
O
(0,0)
L : x+2y–5=0
2
x
L : 3x–y+1=0
1
 
 ?3a
2
 – a > 0 
 
1
a ( ,0) ,
3
??
? ? ? ? ?
??
??
…………….(1) 
 Let L
2
 : x + 2y – 5 = 0 
 Origin and P lies same side w.r.t. L
2
 
 ?
22
L (0).L (P) 0 ? 
 
2
a 2(a 1) 5 0 ? ? ? ? ? 
 ?
2
a 2a 3 0 ? ? ? 
 ? (a 3)(a 1) 0 ? ? ? 
 ? a ( 3,1) ?? …………….(2) 
 Intersection of (1) and (2) 
 
1
a ( 3,0) ,1
3
??
? ? ?
??
??
 
 
 
 
 
 
 
5. The 20
th
 term from the end of the progression 
1 1 3 1
20,19 ,18 ,17 ,...., 129
4 2 4 4
? is :- 
 (1) –118 
 (2) –110 
 (3) –115 
 (4) –100 
Ans. (3) 
Sol. 
1 1 3 1
20,19 ,18 ,17 ,......, 129
4 2 4 4
? 
 This is A.P. with common difference  
 
1
13
d1
44
? ? ? ? ? 
 
11
129 ,..............,19 ,20
44
? 
 This is also A.P. 
1
a 129
4
?? and 
3
d
4
? 
 Required term =  
 
13
129 (20 1)
44
??
? ? ?
??
??
 
 
13
129 15 115
44
? ? ? ? ? ? ? 
6. Let 
1
f : R R
2
? ??
??
??
??
 and 
5
g : R R
2
? ??
??
??
??
 be 
defined as 
2x 3
f (x)
2x 1
?
?
?
 and 
| x | 1
g(x)
2x 5
?
?
?
. Then 
the domain of the function fog is : 
 (1) 
5
R
2
??
??
??
??
 
 (2) R 
 (3) 
7
R
4
??
??
??
??
 
 (4) 
57
R,
24
??
? ? ?
??
??
 
Ans. (1) 
Sol. 
2x 3 1
f (x) ;x
2x 1 2
?
? ? ?
?
 
 
| x | 1 5
g(x) ,x
2x 5 2
?
? ? ?
?
 
 Domain of f(g(x)) 
 
2g(x) 3
f (g(x))
2g(x) 1
?
?
?
 
 
5
x
2
?? and 
| x | 1 1
2x 5 2
?
??
?
 
 
5
xR
2
??
? ? ?
??
??
 and xR ? 
 ? Domain will be 
5
R
2
??
??
??
??
 
7. For 0 < a < 1, the value of the integral 
2
0
dx
1 2a cos x a
?
??
?
 is : 
 (1) 
2
2
a
?
??
 
 (2) 
2
2
a
?
??
 
 (3) 
2
1a
?
?
 
 (4) 
2
1a
?
?
 
Ans. (3) 
Sol. 
2
0
dx
I ; 0 a 1
1 2a cos x a
?
? ? ?
??
?
 
 
2
0
dx
I
1 2a cos x a
?
?
??
?
   
 
/2
2
2 2 2 2
0
2(1 a )
2I 2 dx
(1 a ) 4a cos x
?
?
?
??
?
 
 
/2
22
2 2 2 2
0
2(1 a ).sec x
I dx
(1 a ) .sec x 4a
?
?
??
??
?
 
 
/2
22
2 2 2 2 2
0
2.(1 a ).sec x
I dx
(1 a ) .tan x (1 a )
?
?
??
? ? ?
?
 
 
 
 
 
 
2
/2
2
2
2
0
2
2
2.sec x
.dx
1a
I
1a
tan x
1a
?
?
??
?? ?
?
??
?
??
?
 
 
2
2
I0
(1 a ) 2
? ??
? ? ?
??
?
??
 
 
2
I
1a
?
?
?
  
8. Let 
x
g(x) 3f f (3 x)
3
??
? ? ?
??
??
 and f (x) 0 ?? ? for all 
x (0,3) ? . If g is decreasing in (0, ?) and 
increasing in ( ?, 3), then 8 ? is 
 (1) 24 
 (2) 0 
 (3) 18 
 (4) 20 
Ans. (3) 
Sol. 
x
g(x) 3f f (3 x)
3
??
? ? ?
??
??
 and f (x) 0 ?? ? ? x ? (0, 3) 
 f (x) ? ? is increasing function 
 
1x
g (x) 3 .f f (3 x)
33
??
? ? ? ? ? ? ?
??
??
 
 
x
f f (3 x)
3
??
?? ? ? ?
??
??
 
 If g is decreasing in (0, ?) 
 g (x) 0 ? ? 
 
x
f f (3 x) 0
3
??
?? ? ? ?
??
??
 
 
x
f f (3 x)
3
??
?? ??
??
??
 
 
x
3x
3
? ? ?  
 
9
x
4
?? 
 Therefore 
9
4
?? 
 Then 
9
8 8 18
4
? ? ? ?  
9. If 
e
2
x0
3 sin x cos x log (1 x)
1
lim
3tan x 3
?
? ? ? ? ? ?
? , then 
2 ?– ? is equal to : 
 (1) 2 
 (2) 7 
 (3) 5 
 (4) 1 
Ans. (3) 
Sol. 
e
2
x0
3 sin x cos x log (1 x)
1
lim
3tan x 3
?
? ? ? ? ? ?
? 
 
3 2 4 2 3
2
x0
x x x x x
3 x .... 1 .... x ...
3! 2! 4! 2 3 1
lim
3tan x 3
?
? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ?
?? ? ? ? ?
? ? ? ? ? ?
??
 
 
2
2
22
x0
1
(3 ) ( 1)x x ....
x1 22
lim
3x tan x 3
?
? ??
? ? ? ? ? ? ? ? ?
??
??
? ? ?
 
 3 0, 1 0 ? ? ? ? ? ? ? and 
1
1
22
33
?
??
? 
 3, 1 ? ? ? ? ? ? 
 2 2 3 5 ? ? ? ? ? ? ? 
10. If ?, ? are the roots of the equation, 
2
x x 1 0 ? ? ? 
and 
nn
n
S 2023 2024 ? ? ? ? , then 
 (1) 
12 11 10
2S S S ?? 
 (2) 
12 11 10
S S S ?? 
 (3) 
11 12 10
2S S S ?? 
 (4) 
11 10 12
S S S ?? 
Ans. (2) 
Sol. 
2
x x 1 0 ? ? ? 
 
nn
n
S 2023 2024 ? ? ? ? 
 
n 1 n 1 n 2 n 2
n 1 n 2
S S 2023 2024 2023 2024
? ? ? ?
??
? ? ? ? ? ? ? ? ? 
 
n 2 n 2
2023 [1 ] 2024 [1 ]
??
? ? ? ? ? ? ? ? 
 
n 2 2 n 2 2
2023 [ ] 2024 [ ]
??
? ? ? ? ? ? 
 
nn
2023 2024 ? ? ? ? 
 
n 1 n 2 n
S S S
??
?? 
 Put n = 12 
 
11 10 12
S S S ?? 
Page 5


  
            
  
 
 
 
 
 
 
 
 
SECTION-A 
1. Considering only the principal values of inverse 
trigonometric functions, the number of positive 
real values of x satisfying 
11
tan (x) tan (2x)
4
??
?
?? 
is :
 
 (1) More than 2 
 (2) 1 
 (3) 2 
 (4) 0 
Ans. (2) 
Sol. 
11
tan x tan 2x
4
??
?
?? ; x > 0 
 ?
11
tan 2x tan x
4
??
?
?? 
 Taking tan both sides 
 ?
1x
2x
1x
?
?
?
 
 
2
2x 3x 1 0 ? ? ? ? 
 
3 9 8 3 17
x
88
? ? ? ? ?
?? 
 Only possible 
3 17
x
8
??
? 
2. Consider the function f :(0,2) R ? defined by 
x2
f (x)
2x
?? and the function g(x) defined by 
min{f (t)}, 0 t x and 0 x 1
g(x) 3
x, 1 x 2
2
? ? ? ? ?
?
?
?
? ? ?
?
?
. Then 
 (1) g is continuous but not differentiable at x = 1 
 (2) g is not continuous for all x (0,2) ? 
 (3) g is neither continuous nor differentiable at x = 1 
 (4) g is continuous and differentiable for all x (0,2) ? 
Ans. (1) 
Sol. f :(0,2) R ? ; 
x2
f (x)
2x
?? 
 
12
f (x)
2x
?
? ?? 
 f (x) ? is decreasing in domain.  
 
2
2
x
f(x)
 
 
x2
0 x 1
2x
g(x)
3
x 1 x 2
2
?
? ? ?
?
?
?
?
? ? ?
?
 
 
1 2 O
g(x)
  
3. Let the image of the point (1, 0, 7) in the line 
x y 1 z 2
1 2 3
??
?? be the point ( ?, ?, ?). Then 
which one of the following points lies on the line 
passing through ( ?, ?, ?) and making angles 
2
3
?
 
and 
3
4
?
 with y-axis and z-axis respectively and an 
acute angle with x-axis ? 
 (1) 
? ?
1, 2,1 2 ?? 
 (2) 
? ?
1,2,1 2 ? 
 (3) 
? ?
3,4,3 2 2 ? 
 (4) 
? ?
3, 4,3 2 2 ?? 
Ans. (3) 
 
 
 
 
 
Sol. 
1
x y 1 z 2
L
1 2 3
??
? ? ? ? ? 
  
 M( ,1 2 ,2 3 ) ? ? ? ? ? 
 
ˆ ˆ ˆ
PM ( 1)i (1 2 )j (3 5)k ? ? ? ? ? ? ? ? ? 
 PM is perpendicular to line L
1
 
 PM.b 0 ?     (
ˆ ˆ ˆ
b i 2j 3k ? ? ? ) 
 1 4 2 9 15 0 ? ? ? ? ? ? ? ? ? ? 
 14 14 1 ? ? ? ? ? 
 M (1,3,5) ?? 
 Q 2M P ?? [M is midpoint of P & Q ] 
 
ˆ ˆ ˆ ˆ ˆ
Q 2i 6j 10k i 7k ? ? ? ? ? 
 
ˆ ˆ ˆ
Q i 6j 3k ? ? ? 
 ( , , ) (1,6,3) ? ? ? ? ? 
 Required line having direction cosine (l, m, n) 
 
2 2 2
1 ? ? ? l m n 
 
2 2
2
11
1
2 2
?? ??
? ? ? ? ? ?
?? ??
?? ??
l 
 
2
1
4
? l 
 
1
2
?? l [Line make acute angle with x-axis] 
 Equation of line passing through (1, 6, 3) will be 
 
1 1 1
ˆ ˆ ˆ ˆ ˆ ˆ
r (i 6j 3k) i j k
22 2
??
? ? ? ? ? ? ?
??
??
 
 Option (3) satisfying for ? = 4 
4. Let R be the interior region between the lines 
3x y 1 0 ? ? ? and x 2y 5 0 ? ? ? containing the 
origin. The set of all values of a, for which the 
points (a
2
, a + 1) lie in R, is : 
 (1) 
1
( 3, 1) ,1
3
??
? ? ? ?
??
??
 
 (2) 
1
( 3,0) ,1
3
??
??
??
??
 
 (3) 
2
( 3,0) ,1
3
??
??
??
??
 
 (4) 
1
( 3, 1) ,1
3
??
? ? ?
??
??
 
Ans. (2) 
Sol. P(a
2
, a + 1) 
 L
1
 = 3x – y + 1 = 0 
 Origin and P lies same side w.r.t. L
1
 
 ?L
1
(0) . L
1
(P) > 0 
 ? 3(a
2
) – (a + 1) + 1 > 0 
 
y
O
(0,0)
L : x+2y–5=0
2
x
L : 3x–y+1=0
1
 
 ?3a
2
 – a > 0 
 
1
a ( ,0) ,
3
??
? ? ? ? ?
??
??
…………….(1) 
 Let L
2
 : x + 2y – 5 = 0 
 Origin and P lies same side w.r.t. L
2
 
 ?
22
L (0).L (P) 0 ? 
 
2
a 2(a 1) 5 0 ? ? ? ? ? 
 ?
2
a 2a 3 0 ? ? ? 
 ? (a 3)(a 1) 0 ? ? ? 
 ? a ( 3,1) ?? …………….(2) 
 Intersection of (1) and (2) 
 
1
a ( 3,0) ,1
3
??
? ? ?
??
??
 
 
 
 
 
 
 
5. The 20
th
 term from the end of the progression 
1 1 3 1
20,19 ,18 ,17 ,...., 129
4 2 4 4
? is :- 
 (1) –118 
 (2) –110 
 (3) –115 
 (4) –100 
Ans. (3) 
Sol. 
1 1 3 1
20,19 ,18 ,17 ,......, 129
4 2 4 4
? 
 This is A.P. with common difference  
 
1
13
d1
44
? ? ? ? ? 
 
11
129 ,..............,19 ,20
44
? 
 This is also A.P. 
1
a 129
4
?? and 
3
d
4
? 
 Required term =  
 
13
129 (20 1)
44
??
? ? ?
??
??
 
 
13
129 15 115
44
? ? ? ? ? ? ? 
6. Let 
1
f : R R
2
? ??
??
??
??
 and 
5
g : R R
2
? ??
??
??
??
 be 
defined as 
2x 3
f (x)
2x 1
?
?
?
 and 
| x | 1
g(x)
2x 5
?
?
?
. Then 
the domain of the function fog is : 
 (1) 
5
R
2
??
??
??
??
 
 (2) R 
 (3) 
7
R
4
??
??
??
??
 
 (4) 
57
R,
24
??
? ? ?
??
??
 
Ans. (1) 
Sol. 
2x 3 1
f (x) ;x
2x 1 2
?
? ? ?
?
 
 
| x | 1 5
g(x) ,x
2x 5 2
?
? ? ?
?
 
 Domain of f(g(x)) 
 
2g(x) 3
f (g(x))
2g(x) 1
?
?
?
 
 
5
x
2
?? and 
| x | 1 1
2x 5 2
?
??
?
 
 
5
xR
2
??
? ? ?
??
??
 and xR ? 
 ? Domain will be 
5
R
2
??
??
??
??
 
7. For 0 < a < 1, the value of the integral 
2
0
dx
1 2a cos x a
?
??
?
 is : 
 (1) 
2
2
a
?
??
 
 (2) 
2
2
a
?
??
 
 (3) 
2
1a
?
?
 
 (4) 
2
1a
?
?
 
Ans. (3) 
Sol. 
2
0
dx
I ; 0 a 1
1 2a cos x a
?
? ? ?
??
?
 
 
2
0
dx
I
1 2a cos x a
?
?
??
?
   
 
/2
2
2 2 2 2
0
2(1 a )
2I 2 dx
(1 a ) 4a cos x
?
?
?
??
?
 
 
/2
22
2 2 2 2
0
2(1 a ).sec x
I dx
(1 a ) .sec x 4a
?
?
??
??
?
 
 
/2
22
2 2 2 2 2
0
2.(1 a ).sec x
I dx
(1 a ) .tan x (1 a )
?
?
??
? ? ?
?
 
 
 
 
 
 
2
/2
2
2
2
0
2
2
2.sec x
.dx
1a
I
1a
tan x
1a
?
?
??
?? ?
?
??
?
??
?
 
 
2
2
I0
(1 a ) 2
? ??
? ? ?
??
?
??
 
 
2
I
1a
?
?
?
  
8. Let 
x
g(x) 3f f (3 x)
3
??
? ? ?
??
??
 and f (x) 0 ?? ? for all 
x (0,3) ? . If g is decreasing in (0, ?) and 
increasing in ( ?, 3), then 8 ? is 
 (1) 24 
 (2) 0 
 (3) 18 
 (4) 20 
Ans. (3) 
Sol. 
x
g(x) 3f f (3 x)
3
??
? ? ?
??
??
 and f (x) 0 ?? ? ? x ? (0, 3) 
 f (x) ? ? is increasing function 
 
1x
g (x) 3 .f f (3 x)
33
??
? ? ? ? ? ? ?
??
??
 
 
x
f f (3 x)
3
??
?? ? ? ?
??
??
 
 If g is decreasing in (0, ?) 
 g (x) 0 ? ? 
 
x
f f (3 x) 0
3
??
?? ? ? ?
??
??
 
 
x
f f (3 x)
3
??
?? ??
??
??
 
 
x
3x
3
? ? ?  
 
9
x
4
?? 
 Therefore 
9
4
?? 
 Then 
9
8 8 18
4
? ? ? ?  
9. If 
e
2
x0
3 sin x cos x log (1 x)
1
lim
3tan x 3
?
? ? ? ? ? ?
? , then 
2 ?– ? is equal to : 
 (1) 2 
 (2) 7 
 (3) 5 
 (4) 1 
Ans. (3) 
Sol. 
e
2
x0
3 sin x cos x log (1 x)
1
lim
3tan x 3
?
? ? ? ? ? ?
? 
 
3 2 4 2 3
2
x0
x x x x x
3 x .... 1 .... x ...
3! 2! 4! 2 3 1
lim
3tan x 3
?
? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ?
?? ? ? ? ?
? ? ? ? ? ?
??
 
 
2
2
22
x0
1
(3 ) ( 1)x x ....
x1 22
lim
3x tan x 3
?
? ??
? ? ? ? ? ? ? ? ?
??
??
? ? ?
 
 3 0, 1 0 ? ? ? ? ? ? ? and 
1
1
22
33
?
??
? 
 3, 1 ? ? ? ? ? ? 
 2 2 3 5 ? ? ? ? ? ? ? 
10. If ?, ? are the roots of the equation, 
2
x x 1 0 ? ? ? 
and 
nn
n
S 2023 2024 ? ? ? ? , then 
 (1) 
12 11 10
2S S S ?? 
 (2) 
12 11 10
S S S ?? 
 (3) 
11 12 10
2S S S ?? 
 (4) 
11 10 12
S S S ?? 
Ans. (2) 
Sol. 
2
x x 1 0 ? ? ? 
 
nn
n
S 2023 2024 ? ? ? ? 
 
n 1 n 1 n 2 n 2
n 1 n 2
S S 2023 2024 2023 2024
? ? ? ?
??
? ? ? ? ? ? ? ? ? 
 
n 2 n 2
2023 [1 ] 2024 [1 ]
??
? ? ? ? ? ? ? ? 
 
n 2 2 n 2 2
2023 [ ] 2024 [ ]
??
? ? ? ? ? ? 
 
nn
2023 2024 ? ? ? ? 
 
n 1 n 2 n
S S S
??
?? 
 Put n = 12 
 
11 10 12
S S S ?? 
 
 
 
 
 
11. Let A and B be two finite sets with m and n 
elements respectively. The total number of subsets 
of the set A is 56 more than the total number of 
subsets of B. Then the distance of the point P(m, n) 
from the point Q(–2, –3) is 
 (1) 10 
 (2) 6 
 (3) 4 
 (4) 8 
Ans. (1) 
Sol. 
mn
2 2 56 ?? 
 
n m n 3
2 (2 1) 2 7
?
? ? ? 
 
n3
22 ? and 
mn
2 1 7
?
?? 
 
mn
n 3 and 2 8
?
? ? ? 
 n 3 and m n 3 ? ? ? ? 
 n 3 and m 6 ? ? ? 
 P(6,3) and Q(–2, –3) 
 
22
PQ 8 6 100 10 ? ? ? ? 
 Hence option (1) is correct 
 
 
12. The values of ?, for which  
 
33
1
22
11
10
33
2 3 3 1 0
??
? ? ?
? ? ? ?
, lie in the interval 
 (1) (–2, 1) 
 (2) (–3, 0) 
 (3) 
33
,
22
??
?
??
??
 
 (4) (0, 3) 
Ans. (2) 
Sol. 
33
1
22
11
10
33
2 3 3 1 0
??
? ? ?
? ? ? ?
 
 
77
(2 3) (3 1) 0
66
?? ? ? ? ?
? ? ? ? ? ? ?
? ? ? ?
? ? ? ?
 
 
77
(2 3). (3 1). 0
66
?
? ? ? ? ? ? ? 
 
2
2 3 3 1 0 ? ? ? ? ? ? ? ? 
 
2
2 6 1 0 ? ? ? ? ? ? 
 
3 7 3 7
,
22
? ? ? ?
? ? ? 
 Hence option (2) is correct. 
13. An urn contains 6 white and 9 black balls. Two 
successive draws of 4 balls are made without 
replacement. The probability, that the first draw 
gives all white balls and the second draw gives all 
black balls, is : 
 (1) 
5
256
 (2) 
5
715
 
 (3) 
3
715
  (4) 
3
256
 
Ans. (3) 
Sol. 
69
44
15 11
44
CC
3
C C 715
?? 
 Hence option (3) is correct. 
14. The integral 
82
12 6 1 3
3
(x x )dx
1
(x 3x 1) tan x
x
?
?
??
? ? ?
??
??
?
 is 
equal to :  
 (1) 
1/3
13
3 e
1
log tan x C
x
?
??
??
??
??
??
??
??
 
 (2) 
1/2
13
3 e
1
log tan x C
x
?
??
??
??
??
??
??
??
 
 (3) 
13
3 e
1
log tan x C
x
?
??
??
??
??
??
??
??
 
 (4) 
3
13
3 e
1
log tan x C
x
?
??
??
??
??
??
??
??
 
Ans. (1) 
Read More
357 docs|148 tests

Top Courses for JEE

FAQs on JEE Main 2024 January 27 Shift 2 Paper & Solutions - Mock Tests for JEE Main and Advanced 2025

3. क्या JEE Main 2024 के लिए ऑनलाइन आवेदन प्रक्रिया शुरू हो चुकी है?
Ans. हां, JEE Main 2024 के लिए ऑनलाइन आवेदन प्रक्रिया शुरू हो चुकी है।
4. क्या JEE Main 2024 के लिए पाठ्यक्रम में कोई बदलाव किया गया है?
Ans. अभी तक कोई आधिकारिक सुचना नहीं है कि JEE Main 2024 के पाठ्यक्रम में कोई बदलाव किया गया है।
5. क्या JEE Main 2024 के लिए परीक्षा तिथियां घोषित हो चुकी हैं?
Ans. हां, JEE Main 2024 के लिए परीक्षा तिथियां घोषित हो चुकी हैं और उन्हें आधिकारिक वेबसाइट पर उपलब्ध किया गया है।
357 docs|148 tests
Download as PDF
Explore Courses for JEE exam

Top Courses for JEE

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Previous Year Questions with Solutions

,

ppt

,

video lectures

,

JEE Main 2024 January 27 Shift 2 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025

,

Sample Paper

,

Extra Questions

,

Semester Notes

,

MCQs

,

Summary

,

Important questions

,

practice quizzes

,

mock tests for examination

,

JEE Main 2024 January 27 Shift 2 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025

,

Exam

,

Objective type Questions

,

pdf

,

Free

,

JEE Main 2024 January 27 Shift 2 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025

,

shortcuts and tricks

,

Viva Questions

,

past year papers

,

study material

;