JEE Exam  >  JEE Notes  >  Mock Tests for JEE Main and Advanced 2025  >  JEE Main 2024 January 31 Shift 1 Paper & Solutions

JEE Main 2024 January 31 Shift 1 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025 PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


  
        
  
 
 
 
 
SECTION-A 
1. For 0 < c < b < a, let (a + b – 2c)x
2
 + (b + c – 2a)x 
+ (c + a – 2b) = 0 and 1 ?? be one of its root. 
Then, among the two statements 
 (I) If ? ? 1,0 ? ? ? , then b cannot be the geometric 
mean of a and c 
 (II) If ? ? 0,1 ?? , then b may be the geometric 
mean of a and c 
 (1) Both (I) and (II) are true 
 (2) Neither (I) nor (II) is true 
 (3) Only (II) is true 
 (4) Only (I) is true 
Ans.  (1) 
Sol. f(x) = (a + b – 2c) x
2
 + (b + c – 2a) x + (c + a – 2b) 
 f(x) = a + b – 2c + b + c – 2a + c + a – 2b = 0 
 f(1) = 0 
 
??
? ? ? ?
??
c a 2b
1
a b 2c
 
 
??
??
??
c a 2b
a b 2c
 
 If, –1 < ? < 0 
 
??
? ? ?
??
c a 2b
10
a b 2c
 
b + c < 2a and 
?
?
ac
b
2
 
therefore, b cannot be G.M. between a and c.  
If, ? ? ? 01 
??
??
??
c a 2b
01
a b 2c
 
b > c and 
?
?
ac
b
2
 
Therefore, b may be the G.M. between a and c.  
2. Let a be the sum of all coefficients in the 
expansion of (1 – 2x + 2x
2
)
2023
 (3 – 4x
2
+2x
3
)
2024
 
and 
? ?
?
?? ?
??
?
??
?
??
??
??
??
?
x
2024
0
2
x0
log 1 t
dt
t1
b lim .
x
 If the equations  
cx
2
 + dx + e = 0 and 2bx
2
 + ax + 4 = 0 have a 
common root, where c, d, e ? R, then d : c : e 
equals 
 (1) 2 : 1 : 4 (2) 4 : 1 : 4 
 (3) 1 : 2 : 4  (4) 1 : 1 : 4 
Ans.  (4) 
Sol. Put x = 1 
 ?? a1 
 
? ?
?
?
?
?
?
x
2024
0
2
x0
ln 1 t
dt
1t
b lim
x
 
 Using L’ HOPITAL Rule 
 
? ?
? ?
?
?
? ? ?
?
2024
x0
ln 1 x
11
b lim
2x 2 1x
 
 Now, cx
2
 + dx + e = 0,   x
2
 + x + 4 = 0 
                                          (D < 0) 
 ? ? ?
c d e
1 1 4
 
3. If the foci of a hyperbola are same as that of the 
ellipse ??
22
xy
1
9 25
 and the eccentricity of the 
hyperbola is 
15
8
 times the eccentricity of the 
ellipse, then the smaller focal distance of the point 
??
??
??
??
14 2
2,
35
 on the hyperbola, is equal to  
 (1) ?
28
7
53
 (2) ?
24
14
53
 
 (3) ?
2 16
14
53
 (4) ?
28
7
53
 
Ans.  (1) 
Page 2


  
        
  
 
 
 
 
SECTION-A 
1. For 0 < c < b < a, let (a + b – 2c)x
2
 + (b + c – 2a)x 
+ (c + a – 2b) = 0 and 1 ?? be one of its root. 
Then, among the two statements 
 (I) If ? ? 1,0 ? ? ? , then b cannot be the geometric 
mean of a and c 
 (II) If ? ? 0,1 ?? , then b may be the geometric 
mean of a and c 
 (1) Both (I) and (II) are true 
 (2) Neither (I) nor (II) is true 
 (3) Only (II) is true 
 (4) Only (I) is true 
Ans.  (1) 
Sol. f(x) = (a + b – 2c) x
2
 + (b + c – 2a) x + (c + a – 2b) 
 f(x) = a + b – 2c + b + c – 2a + c + a – 2b = 0 
 f(1) = 0 
 
??
? ? ? ?
??
c a 2b
1
a b 2c
 
 
??
??
??
c a 2b
a b 2c
 
 If, –1 < ? < 0 
 
??
? ? ?
??
c a 2b
10
a b 2c
 
b + c < 2a and 
?
?
ac
b
2
 
therefore, b cannot be G.M. between a and c.  
If, ? ? ? 01 
??
??
??
c a 2b
01
a b 2c
 
b > c and 
?
?
ac
b
2
 
Therefore, b may be the G.M. between a and c.  
2. Let a be the sum of all coefficients in the 
expansion of (1 – 2x + 2x
2
)
2023
 (3 – 4x
2
+2x
3
)
2024
 
and 
? ?
?
?? ?
??
?
??
?
??
??
??
??
?
x
2024
0
2
x0
log 1 t
dt
t1
b lim .
x
 If the equations  
cx
2
 + dx + e = 0 and 2bx
2
 + ax + 4 = 0 have a 
common root, where c, d, e ? R, then d : c : e 
equals 
 (1) 2 : 1 : 4 (2) 4 : 1 : 4 
 (3) 1 : 2 : 4  (4) 1 : 1 : 4 
Ans.  (4) 
Sol. Put x = 1 
 ?? a1 
 
? ?
?
?
?
?
?
x
2024
0
2
x0
ln 1 t
dt
1t
b lim
x
 
 Using L’ HOPITAL Rule 
 
? ?
? ?
?
?
? ? ?
?
2024
x0
ln 1 x
11
b lim
2x 2 1x
 
 Now, cx
2
 + dx + e = 0,   x
2
 + x + 4 = 0 
                                          (D < 0) 
 ? ? ?
c d e
1 1 4
 
3. If the foci of a hyperbola are same as that of the 
ellipse ??
22
xy
1
9 25
 and the eccentricity of the 
hyperbola is 
15
8
 times the eccentricity of the 
ellipse, then the smaller focal distance of the point 
??
??
??
??
14 2
2,
35
 on the hyperbola, is equal to  
 (1) ?
28
7
53
 (2) ?
24
14
53
 
 (3) ?
2 16
14
53
 (4) ?
28
7
53
 
Ans.  (1) 
 
Sol. ??
22
xy
1
9 25
 
a = 3, b = 5 
? ? ?
94
e1
25 5
 ? ? ? ? ? foci 0, be = (0, ± 4) 
 ? ? ? ?
H
4 15 3
e
5 8 2
 
Let equation hyperbola 
? ? ?
22
22
xy
1
AB
 
? ? ?
H
B e 4 ??
8
B
3
 
? ?
??
? ? ? ? ?
??
??
2 2 2
H
64 9
A B e 1 1
94
 ??
2
80
A
9
 
? ? ? ?
22
xy
1
80 64
99
 
Directrix : ? ? ? ?
H
B 16
y
e9
 
PS = 
3 14 2 16
e PM
2 3 5 9
? ? ? ? 
??
28
7
53
  
4. If one of the diameters of the circle x
2
 + y
2
 – 10x + 
4y + 13 = 0 is a chord of another circle C, whose 
center is the point of intersection of the lines 2x + 
3y = 12 and 3x – 2y = 5, then the radius of the 
circle C is  
 (1) 20 (2) 4 
 (3) 6  (4) 32 
Ans.  (3) 
Sol. 
C
M
(3, 2)
4
P
(5, –2)
 
 2x + 3y = 12 
 3x – 2y = 5 
 13 x = 39 
 x = 3, y = 2 
 Center of given circle is (5, –2) 
 Radius ? ? ? 25 4 13 4 
 ? ? ? ? CM 4 16 5 2 
 ? ? ? ? CP 16 20 6 
5. The area of the region  
 
? ?
? ? ? ?
? ? ? ?
?? ??
??
? ? ? ?
??
??
??
??
2
xy x 1 x 2
x,y : y 4x,x 4, 0,x 3
x 3 x 4
 
is 
 (1) 
16
3
 (2) 
64
3
 
 (3) 
8
3
  (4) 
32
3
 
 Ans. (4) 
Sol. ??
2
y 4x,x 4 
 
? ? ? ?
? ? ? ?
??
?
??
xy x 1 x 2
0
x 3 x 4
 
 Case – I : y0 ? 
 
? ? ? ?
? ? ? ?
??
?
??
x x 1 x 2
0
x 3 x 4
 
 ? ? ? ? ?? x 0,1 2,3 
 Case – II : y < 0 
 
? ? ? ?
? ? ? ?
? ? ? ?
??
? ? ?
??
x x 1 x 2
0, x 1,2 3,4
x 3 x 4
 
  
 ?
?
4
0
Area 2 x dx 
 ?? ? ? ?
??
4
3/2
0
2 32
2x
33
 
Page 3


  
        
  
 
 
 
 
SECTION-A 
1. For 0 < c < b < a, let (a + b – 2c)x
2
 + (b + c – 2a)x 
+ (c + a – 2b) = 0 and 1 ?? be one of its root. 
Then, among the two statements 
 (I) If ? ? 1,0 ? ? ? , then b cannot be the geometric 
mean of a and c 
 (II) If ? ? 0,1 ?? , then b may be the geometric 
mean of a and c 
 (1) Both (I) and (II) are true 
 (2) Neither (I) nor (II) is true 
 (3) Only (II) is true 
 (4) Only (I) is true 
Ans.  (1) 
Sol. f(x) = (a + b – 2c) x
2
 + (b + c – 2a) x + (c + a – 2b) 
 f(x) = a + b – 2c + b + c – 2a + c + a – 2b = 0 
 f(1) = 0 
 
??
? ? ? ?
??
c a 2b
1
a b 2c
 
 
??
??
??
c a 2b
a b 2c
 
 If, –1 < ? < 0 
 
??
? ? ?
??
c a 2b
10
a b 2c
 
b + c < 2a and 
?
?
ac
b
2
 
therefore, b cannot be G.M. between a and c.  
If, ? ? ? 01 
??
??
??
c a 2b
01
a b 2c
 
b > c and 
?
?
ac
b
2
 
Therefore, b may be the G.M. between a and c.  
2. Let a be the sum of all coefficients in the 
expansion of (1 – 2x + 2x
2
)
2023
 (3 – 4x
2
+2x
3
)
2024
 
and 
? ?
?
?? ?
??
?
??
?
??
??
??
??
?
x
2024
0
2
x0
log 1 t
dt
t1
b lim .
x
 If the equations  
cx
2
 + dx + e = 0 and 2bx
2
 + ax + 4 = 0 have a 
common root, where c, d, e ? R, then d : c : e 
equals 
 (1) 2 : 1 : 4 (2) 4 : 1 : 4 
 (3) 1 : 2 : 4  (4) 1 : 1 : 4 
Ans.  (4) 
Sol. Put x = 1 
 ?? a1 
 
? ?
?
?
?
?
?
x
2024
0
2
x0
ln 1 t
dt
1t
b lim
x
 
 Using L’ HOPITAL Rule 
 
? ?
? ?
?
?
? ? ?
?
2024
x0
ln 1 x
11
b lim
2x 2 1x
 
 Now, cx
2
 + dx + e = 0,   x
2
 + x + 4 = 0 
                                          (D < 0) 
 ? ? ?
c d e
1 1 4
 
3. If the foci of a hyperbola are same as that of the 
ellipse ??
22
xy
1
9 25
 and the eccentricity of the 
hyperbola is 
15
8
 times the eccentricity of the 
ellipse, then the smaller focal distance of the point 
??
??
??
??
14 2
2,
35
 on the hyperbola, is equal to  
 (1) ?
28
7
53
 (2) ?
24
14
53
 
 (3) ?
2 16
14
53
 (4) ?
28
7
53
 
Ans.  (1) 
 
Sol. ??
22
xy
1
9 25
 
a = 3, b = 5 
? ? ?
94
e1
25 5
 ? ? ? ? ? foci 0, be = (0, ± 4) 
 ? ? ? ?
H
4 15 3
e
5 8 2
 
Let equation hyperbola 
? ? ?
22
22
xy
1
AB
 
? ? ?
H
B e 4 ??
8
B
3
 
? ?
??
? ? ? ? ?
??
??
2 2 2
H
64 9
A B e 1 1
94
 ??
2
80
A
9
 
? ? ? ?
22
xy
1
80 64
99
 
Directrix : ? ? ? ?
H
B 16
y
e9
 
PS = 
3 14 2 16
e PM
2 3 5 9
? ? ? ? 
??
28
7
53
  
4. If one of the diameters of the circle x
2
 + y
2
 – 10x + 
4y + 13 = 0 is a chord of another circle C, whose 
center is the point of intersection of the lines 2x + 
3y = 12 and 3x – 2y = 5, then the radius of the 
circle C is  
 (1) 20 (2) 4 
 (3) 6  (4) 32 
Ans.  (3) 
Sol. 
C
M
(3, 2)
4
P
(5, –2)
 
 2x + 3y = 12 
 3x – 2y = 5 
 13 x = 39 
 x = 3, y = 2 
 Center of given circle is (5, –2) 
 Radius ? ? ? 25 4 13 4 
 ? ? ? ? CM 4 16 5 2 
 ? ? ? ? CP 16 20 6 
5. The area of the region  
 
? ?
? ? ? ?
? ? ? ?
?? ??
??
? ? ? ?
??
??
??
??
2
xy x 1 x 2
x,y : y 4x,x 4, 0,x 3
x 3 x 4
 
is 
 (1) 
16
3
 (2) 
64
3
 
 (3) 
8
3
  (4) 
32
3
 
 Ans. (4) 
Sol. ??
2
y 4x,x 4 
 
? ? ? ?
? ? ? ?
??
?
??
xy x 1 x 2
0
x 3 x 4
 
 Case – I : y0 ? 
 
? ? ? ?
? ? ? ?
??
?
??
x x 1 x 2
0
x 3 x 4
 
 ? ? ? ? ?? x 0,1 2,3 
 Case – II : y < 0 
 
? ? ? ?
? ? ? ?
? ? ? ?
??
? ? ?
??
x x 1 x 2
0, x 1,2 3,4
x 3 x 4
 
  
 ?
?
4
0
Area 2 x dx 
 ?? ? ? ?
??
4
3/2
0
2 32
2x
33
 
 
 
6. If ? ?
?
??
?
4x 3 2
f x ,x
6x 4 3
 and (fof) (x) = g(x), where 
? ? ? ?
? ? ?
? ? ? ?
? ? ? ?
22
g : ,
33
 then (gogog) (4) is equal 
to 
 (1) ?
19
20
 (2) 
19
20
 
 (3) – 4  (4) 4 
Ans.  (4) 
Sol. ? ?
?
?
?
4x 3
fx
6x 4
 
 ? ?
? ??
?
??
?
??
? ? ?
? ??
?
??
?
??
4x 3
43
34x 6x 4
g x x
4x 3 34
64
6x 4
 
 ? ? ? ? ? ? ? ?
? ? ? g x x g g g 4 4 
7. 
?
??
2 sin x
2
x0
e 2 sin x 1
lim
x
 
 (1) is equal to – 1  (2) does not exist 
 (3) is equal to 1 (4) is equal to 2 
Ans.  (4) 
Sol. 
?
??
2 sin x
2
x0
e 2 sin x 1
lim
x
 
 
?
??
?
2 sin x
2
2 2
x0
e 2 sin x 1
sin x
lim
x
sin x
 
 Let |sinx| = t 
 
??
??
?
2t 2
22
t 0 x 0
e 2t 1 sin x
lim lim
tx
 
 
?
?
? ? ? ? ?
2t
t0
2e 2
lim 1 2 1 2
2t
 
8. If the system of linear equations 
 ? ? ? ? x 2y z 4 
 ? ? ? ? 2x y 3z 5 
 ? ? ? ? 3x y z 3 
 has infinitely many solutions, then 12 ? + 13 ? is 
equal to  
 (1) 60 (2) 64 
 (3) 54  (4) 58 
Ans.  (4) 
Sol. 
?
??
??
1 2 1
D 2 3
31
  
 = 1(?? + 3) + 2(2 ? – 9) + 1(–2 – 3 ?) 
 = ?? + 3 + 4 ? – 18 – 2 – 3 ? 
 For infinite solutions D = 0, D
1
 = 0, D
2
 = 0 and  
 D
3
 = 0 
 D = 0 
 ?? – 3 ? + 4 ? = 17 ….(1) 
 
??
? ? ?
??
1
4 2 1
D 5 3 0
31
 
 
?
??
?
2
1 4 1
D 2 5 3 0
33
 
 
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 5 9 4 2 9 1 6 15 0 
 ? ? ? ? ? 13 9 36 9 0 
 ? ? ? ?
54
13 54,
13
 put in (1) 
 
??
? ? ? ? ?
??
??
54 54
3 4 17
13 13
 
 ? ? ? ? ? 54 39 216 221 
 ?? 15 5 ??
1
3
 
 Now, ? ? ? ? ?
1 54
12 13 12. 13.
3 13
 
 =  4 + 54 = 58  
9. The solution curve of the differential equation  
 
? ? ? ? ?
ee
dx
y x log x log y 1 ,
dy
 x > 0, y > 0 passing 
through the point (e, 1) is 
 (1) ?
e
y
log x
x
 (2) ?
2
e
y
log y
x
  
 (3) ?
e
x
log y
y
 (4) 
e
x
2 log y 1
y
?? 
 Ans. (3) 
Page 4


  
        
  
 
 
 
 
SECTION-A 
1. For 0 < c < b < a, let (a + b – 2c)x
2
 + (b + c – 2a)x 
+ (c + a – 2b) = 0 and 1 ?? be one of its root. 
Then, among the two statements 
 (I) If ? ? 1,0 ? ? ? , then b cannot be the geometric 
mean of a and c 
 (II) If ? ? 0,1 ?? , then b may be the geometric 
mean of a and c 
 (1) Both (I) and (II) are true 
 (2) Neither (I) nor (II) is true 
 (3) Only (II) is true 
 (4) Only (I) is true 
Ans.  (1) 
Sol. f(x) = (a + b – 2c) x
2
 + (b + c – 2a) x + (c + a – 2b) 
 f(x) = a + b – 2c + b + c – 2a + c + a – 2b = 0 
 f(1) = 0 
 
??
? ? ? ?
??
c a 2b
1
a b 2c
 
 
??
??
??
c a 2b
a b 2c
 
 If, –1 < ? < 0 
 
??
? ? ?
??
c a 2b
10
a b 2c
 
b + c < 2a and 
?
?
ac
b
2
 
therefore, b cannot be G.M. between a and c.  
If, ? ? ? 01 
??
??
??
c a 2b
01
a b 2c
 
b > c and 
?
?
ac
b
2
 
Therefore, b may be the G.M. between a and c.  
2. Let a be the sum of all coefficients in the 
expansion of (1 – 2x + 2x
2
)
2023
 (3 – 4x
2
+2x
3
)
2024
 
and 
? ?
?
?? ?
??
?
??
?
??
??
??
??
?
x
2024
0
2
x0
log 1 t
dt
t1
b lim .
x
 If the equations  
cx
2
 + dx + e = 0 and 2bx
2
 + ax + 4 = 0 have a 
common root, where c, d, e ? R, then d : c : e 
equals 
 (1) 2 : 1 : 4 (2) 4 : 1 : 4 
 (3) 1 : 2 : 4  (4) 1 : 1 : 4 
Ans.  (4) 
Sol. Put x = 1 
 ?? a1 
 
? ?
?
?
?
?
?
x
2024
0
2
x0
ln 1 t
dt
1t
b lim
x
 
 Using L’ HOPITAL Rule 
 
? ?
? ?
?
?
? ? ?
?
2024
x0
ln 1 x
11
b lim
2x 2 1x
 
 Now, cx
2
 + dx + e = 0,   x
2
 + x + 4 = 0 
                                          (D < 0) 
 ? ? ?
c d e
1 1 4
 
3. If the foci of a hyperbola are same as that of the 
ellipse ??
22
xy
1
9 25
 and the eccentricity of the 
hyperbola is 
15
8
 times the eccentricity of the 
ellipse, then the smaller focal distance of the point 
??
??
??
??
14 2
2,
35
 on the hyperbola, is equal to  
 (1) ?
28
7
53
 (2) ?
24
14
53
 
 (3) ?
2 16
14
53
 (4) ?
28
7
53
 
Ans.  (1) 
 
Sol. ??
22
xy
1
9 25
 
a = 3, b = 5 
? ? ?
94
e1
25 5
 ? ? ? ? ? foci 0, be = (0, ± 4) 
 ? ? ? ?
H
4 15 3
e
5 8 2
 
Let equation hyperbola 
? ? ?
22
22
xy
1
AB
 
? ? ?
H
B e 4 ??
8
B
3
 
? ?
??
? ? ? ? ?
??
??
2 2 2
H
64 9
A B e 1 1
94
 ??
2
80
A
9
 
? ? ? ?
22
xy
1
80 64
99
 
Directrix : ? ? ? ?
H
B 16
y
e9
 
PS = 
3 14 2 16
e PM
2 3 5 9
? ? ? ? 
??
28
7
53
  
4. If one of the diameters of the circle x
2
 + y
2
 – 10x + 
4y + 13 = 0 is a chord of another circle C, whose 
center is the point of intersection of the lines 2x + 
3y = 12 and 3x – 2y = 5, then the radius of the 
circle C is  
 (1) 20 (2) 4 
 (3) 6  (4) 32 
Ans.  (3) 
Sol. 
C
M
(3, 2)
4
P
(5, –2)
 
 2x + 3y = 12 
 3x – 2y = 5 
 13 x = 39 
 x = 3, y = 2 
 Center of given circle is (5, –2) 
 Radius ? ? ? 25 4 13 4 
 ? ? ? ? CM 4 16 5 2 
 ? ? ? ? CP 16 20 6 
5. The area of the region  
 
? ?
? ? ? ?
? ? ? ?
?? ??
??
? ? ? ?
??
??
??
??
2
xy x 1 x 2
x,y : y 4x,x 4, 0,x 3
x 3 x 4
 
is 
 (1) 
16
3
 (2) 
64
3
 
 (3) 
8
3
  (4) 
32
3
 
 Ans. (4) 
Sol. ??
2
y 4x,x 4 
 
? ? ? ?
? ? ? ?
??
?
??
xy x 1 x 2
0
x 3 x 4
 
 Case – I : y0 ? 
 
? ? ? ?
? ? ? ?
??
?
??
x x 1 x 2
0
x 3 x 4
 
 ? ? ? ? ?? x 0,1 2,3 
 Case – II : y < 0 
 
? ? ? ?
? ? ? ?
? ? ? ?
??
? ? ?
??
x x 1 x 2
0, x 1,2 3,4
x 3 x 4
 
  
 ?
?
4
0
Area 2 x dx 
 ?? ? ? ?
??
4
3/2
0
2 32
2x
33
 
 
 
6. If ? ?
?
??
?
4x 3 2
f x ,x
6x 4 3
 and (fof) (x) = g(x), where 
? ? ? ?
? ? ?
? ? ? ?
? ? ? ?
22
g : ,
33
 then (gogog) (4) is equal 
to 
 (1) ?
19
20
 (2) 
19
20
 
 (3) – 4  (4) 4 
Ans.  (4) 
Sol. ? ?
?
?
?
4x 3
fx
6x 4
 
 ? ?
? ??
?
??
?
??
? ? ?
? ??
?
??
?
??
4x 3
43
34x 6x 4
g x x
4x 3 34
64
6x 4
 
 ? ? ? ? ? ? ? ?
? ? ? g x x g g g 4 4 
7. 
?
??
2 sin x
2
x0
e 2 sin x 1
lim
x
 
 (1) is equal to – 1  (2) does not exist 
 (3) is equal to 1 (4) is equal to 2 
Ans.  (4) 
Sol. 
?
??
2 sin x
2
x0
e 2 sin x 1
lim
x
 
 
?
??
?
2 sin x
2
2 2
x0
e 2 sin x 1
sin x
lim
x
sin x
 
 Let |sinx| = t 
 
??
??
?
2t 2
22
t 0 x 0
e 2t 1 sin x
lim lim
tx
 
 
?
?
? ? ? ? ?
2t
t0
2e 2
lim 1 2 1 2
2t
 
8. If the system of linear equations 
 ? ? ? ? x 2y z 4 
 ? ? ? ? 2x y 3z 5 
 ? ? ? ? 3x y z 3 
 has infinitely many solutions, then 12 ? + 13 ? is 
equal to  
 (1) 60 (2) 64 
 (3) 54  (4) 58 
Ans.  (4) 
Sol. 
?
??
??
1 2 1
D 2 3
31
  
 = 1(?? + 3) + 2(2 ? – 9) + 1(–2 – 3 ?) 
 = ?? + 3 + 4 ? – 18 – 2 – 3 ? 
 For infinite solutions D = 0, D
1
 = 0, D
2
 = 0 and  
 D
3
 = 0 
 D = 0 
 ?? – 3 ? + 4 ? = 17 ….(1) 
 
??
? ? ?
??
1
4 2 1
D 5 3 0
31
 
 
?
??
?
2
1 4 1
D 2 5 3 0
33
 
 
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 5 9 4 2 9 1 6 15 0 
 ? ? ? ? ? 13 9 36 9 0 
 ? ? ? ?
54
13 54,
13
 put in (1) 
 
??
? ? ? ? ?
??
??
54 54
3 4 17
13 13
 
 ? ? ? ? ? 54 39 216 221 
 ?? 15 5 ??
1
3
 
 Now, ? ? ? ? ?
1 54
12 13 12. 13.
3 13
 
 =  4 + 54 = 58  
9. The solution curve of the differential equation  
 
? ? ? ? ?
ee
dx
y x log x log y 1 ,
dy
 x > 0, y > 0 passing 
through the point (e, 1) is 
 (1) ?
e
y
log x
x
 (2) ?
2
e
y
log y
x
  
 (3) ?
e
x
log y
y
 (4) 
e
x
2 log y 1
y
?? 
 Ans. (3) 
Sol. 
?? ??
??
?? ??
?? ??
dx x x
ln 1
dy y y
 
 Let ? ? ?
x
t x ty
y
 
 ??
dx dt
ty
dy dy
 
 ? ? ? ?
? ? ?
dt
t y t ln t 1
dy
 
 ? ?
? ?
? ? ?
dt dt dy
y t ln t
dy t ln t y
 
 
? ?
??
??
dt dy
t.ln t y
 
 ??
??
dp dy
py
 let ln t = p 
    ?
1
dt dp
t
 
 ? lnp = lny +c 
 ln(ln t) = ln y + c 
 
?? ??
??
?? ??
?? ??
x
ln ln ln y c
y
 
 at  x = e, y = 1  
 
e
ln ln ln(1) c c 0
1
?? ??
? ? ? ?
?? ??
?? ??
 
 
??
?
??
??
x
ln ln ln y
y
 
 
??
?
??
??
ln y
x
ln e
y
 
 
??
?
??
??
x
ln y
y
 
10. Let ? ?? ? ???????? Z and let A ( ? ?? ?), B (1, 0), C ( ?? ?) 
and D (1, 2) be the vertices of a parallelogram 
ABCD. If AB = 10 and the points A and C lie on 
the line 3y = 2x + 1, then 2 ( ? ?? ? ? ? ? ??? ? ??) is equal 
to  
 (1) 10 (2) 5 
 (3) 12  (4) 8 
Ans.  (4) 
Sol. 
A( ) ? ? ? ? B(1, 0)
D(1, 2)
C( ) ? ? ? ?
 
 Let E is mid point of diagonals 
 
? ? ? ?
?
11
22
 & 
? ? ? ?
?
20
22
 
 2 ? ? ? ?  ? ? ? ? 2 
 
? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 2 2 2 8 
11. Let y = y(x) be the solution of the differential 
equation 
? ?
? ?
?
?
?
tan x y
dy
,
dx sin x sec x sin x tan x
 
? ??
?
??
??
x 0,
2
 satisfying the condition 
? ??
?
??
??
y 2.
4
 
Then, 
? ??
??
??
y
3
 is 
 (1) 
? ?
?
e
3 2 log 3 
 (2) ? ? ?
e
3
2 log 3
2
 
 (3) ? ? ?
e
3 1 2log 3 
 (4) ? ? ?
e
3 2 log 3 
 Ans. (1) 
Sol. 
?
?
??
?
??
??
dy sin x ycos x
1 sin x dx
sin x.cos x sin x.
cos x cos x
 
 
? ?
?
?
?
2
sin x ycos x
sin x 1 sin x
 
 ? ?
2
dy
sec x y.2 cos ec2x
dx
?? 
 ? ? ??
2
dy
2cos ec 2x .y sec x
dx
 
 
dy
p.y Q
dx
?? 
Page 5


  
        
  
 
 
 
 
SECTION-A 
1. For 0 < c < b < a, let (a + b – 2c)x
2
 + (b + c – 2a)x 
+ (c + a – 2b) = 0 and 1 ?? be one of its root. 
Then, among the two statements 
 (I) If ? ? 1,0 ? ? ? , then b cannot be the geometric 
mean of a and c 
 (II) If ? ? 0,1 ?? , then b may be the geometric 
mean of a and c 
 (1) Both (I) and (II) are true 
 (2) Neither (I) nor (II) is true 
 (3) Only (II) is true 
 (4) Only (I) is true 
Ans.  (1) 
Sol. f(x) = (a + b – 2c) x
2
 + (b + c – 2a) x + (c + a – 2b) 
 f(x) = a + b – 2c + b + c – 2a + c + a – 2b = 0 
 f(1) = 0 
 
??
? ? ? ?
??
c a 2b
1
a b 2c
 
 
??
??
??
c a 2b
a b 2c
 
 If, –1 < ? < 0 
 
??
? ? ?
??
c a 2b
10
a b 2c
 
b + c < 2a and 
?
?
ac
b
2
 
therefore, b cannot be G.M. between a and c.  
If, ? ? ? 01 
??
??
??
c a 2b
01
a b 2c
 
b > c and 
?
?
ac
b
2
 
Therefore, b may be the G.M. between a and c.  
2. Let a be the sum of all coefficients in the 
expansion of (1 – 2x + 2x
2
)
2023
 (3 – 4x
2
+2x
3
)
2024
 
and 
? ?
?
?? ?
??
?
??
?
??
??
??
??
?
x
2024
0
2
x0
log 1 t
dt
t1
b lim .
x
 If the equations  
cx
2
 + dx + e = 0 and 2bx
2
 + ax + 4 = 0 have a 
common root, where c, d, e ? R, then d : c : e 
equals 
 (1) 2 : 1 : 4 (2) 4 : 1 : 4 
 (3) 1 : 2 : 4  (4) 1 : 1 : 4 
Ans.  (4) 
Sol. Put x = 1 
 ?? a1 
 
? ?
?
?
?
?
?
x
2024
0
2
x0
ln 1 t
dt
1t
b lim
x
 
 Using L’ HOPITAL Rule 
 
? ?
? ?
?
?
? ? ?
?
2024
x0
ln 1 x
11
b lim
2x 2 1x
 
 Now, cx
2
 + dx + e = 0,   x
2
 + x + 4 = 0 
                                          (D < 0) 
 ? ? ?
c d e
1 1 4
 
3. If the foci of a hyperbola are same as that of the 
ellipse ??
22
xy
1
9 25
 and the eccentricity of the 
hyperbola is 
15
8
 times the eccentricity of the 
ellipse, then the smaller focal distance of the point 
??
??
??
??
14 2
2,
35
 on the hyperbola, is equal to  
 (1) ?
28
7
53
 (2) ?
24
14
53
 
 (3) ?
2 16
14
53
 (4) ?
28
7
53
 
Ans.  (1) 
 
Sol. ??
22
xy
1
9 25
 
a = 3, b = 5 
? ? ?
94
e1
25 5
 ? ? ? ? ? foci 0, be = (0, ± 4) 
 ? ? ? ?
H
4 15 3
e
5 8 2
 
Let equation hyperbola 
? ? ?
22
22
xy
1
AB
 
? ? ?
H
B e 4 ??
8
B
3
 
? ?
??
? ? ? ? ?
??
??
2 2 2
H
64 9
A B e 1 1
94
 ??
2
80
A
9
 
? ? ? ?
22
xy
1
80 64
99
 
Directrix : ? ? ? ?
H
B 16
y
e9
 
PS = 
3 14 2 16
e PM
2 3 5 9
? ? ? ? 
??
28
7
53
  
4. If one of the diameters of the circle x
2
 + y
2
 – 10x + 
4y + 13 = 0 is a chord of another circle C, whose 
center is the point of intersection of the lines 2x + 
3y = 12 and 3x – 2y = 5, then the radius of the 
circle C is  
 (1) 20 (2) 4 
 (3) 6  (4) 32 
Ans.  (3) 
Sol. 
C
M
(3, 2)
4
P
(5, –2)
 
 2x + 3y = 12 
 3x – 2y = 5 
 13 x = 39 
 x = 3, y = 2 
 Center of given circle is (5, –2) 
 Radius ? ? ? 25 4 13 4 
 ? ? ? ? CM 4 16 5 2 
 ? ? ? ? CP 16 20 6 
5. The area of the region  
 
? ?
? ? ? ?
? ? ? ?
?? ??
??
? ? ? ?
??
??
??
??
2
xy x 1 x 2
x,y : y 4x,x 4, 0,x 3
x 3 x 4
 
is 
 (1) 
16
3
 (2) 
64
3
 
 (3) 
8
3
  (4) 
32
3
 
 Ans. (4) 
Sol. ??
2
y 4x,x 4 
 
? ? ? ?
? ? ? ?
??
?
??
xy x 1 x 2
0
x 3 x 4
 
 Case – I : y0 ? 
 
? ? ? ?
? ? ? ?
??
?
??
x x 1 x 2
0
x 3 x 4
 
 ? ? ? ? ?? x 0,1 2,3 
 Case – II : y < 0 
 
? ? ? ?
? ? ? ?
? ? ? ?
??
? ? ?
??
x x 1 x 2
0, x 1,2 3,4
x 3 x 4
 
  
 ?
?
4
0
Area 2 x dx 
 ?? ? ? ?
??
4
3/2
0
2 32
2x
33
 
 
 
6. If ? ?
?
??
?
4x 3 2
f x ,x
6x 4 3
 and (fof) (x) = g(x), where 
? ? ? ?
? ? ?
? ? ? ?
? ? ? ?
22
g : ,
33
 then (gogog) (4) is equal 
to 
 (1) ?
19
20
 (2) 
19
20
 
 (3) – 4  (4) 4 
Ans.  (4) 
Sol. ? ?
?
?
?
4x 3
fx
6x 4
 
 ? ?
? ??
?
??
?
??
? ? ?
? ??
?
??
?
??
4x 3
43
34x 6x 4
g x x
4x 3 34
64
6x 4
 
 ? ? ? ? ? ? ? ?
? ? ? g x x g g g 4 4 
7. 
?
??
2 sin x
2
x0
e 2 sin x 1
lim
x
 
 (1) is equal to – 1  (2) does not exist 
 (3) is equal to 1 (4) is equal to 2 
Ans.  (4) 
Sol. 
?
??
2 sin x
2
x0
e 2 sin x 1
lim
x
 
 
?
??
?
2 sin x
2
2 2
x0
e 2 sin x 1
sin x
lim
x
sin x
 
 Let |sinx| = t 
 
??
??
?
2t 2
22
t 0 x 0
e 2t 1 sin x
lim lim
tx
 
 
?
?
? ? ? ? ?
2t
t0
2e 2
lim 1 2 1 2
2t
 
8. If the system of linear equations 
 ? ? ? ? x 2y z 4 
 ? ? ? ? 2x y 3z 5 
 ? ? ? ? 3x y z 3 
 has infinitely many solutions, then 12 ? + 13 ? is 
equal to  
 (1) 60 (2) 64 
 (3) 54  (4) 58 
Ans.  (4) 
Sol. 
?
??
??
1 2 1
D 2 3
31
  
 = 1(?? + 3) + 2(2 ? – 9) + 1(–2 – 3 ?) 
 = ?? + 3 + 4 ? – 18 – 2 – 3 ? 
 For infinite solutions D = 0, D
1
 = 0, D
2
 = 0 and  
 D
3
 = 0 
 D = 0 
 ?? – 3 ? + 4 ? = 17 ….(1) 
 
??
? ? ?
??
1
4 2 1
D 5 3 0
31
 
 
?
??
?
2
1 4 1
D 2 5 3 0
33
 
 
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 5 9 4 2 9 1 6 15 0 
 ? ? ? ? ? 13 9 36 9 0 
 ? ? ? ?
54
13 54,
13
 put in (1) 
 
??
? ? ? ? ?
??
??
54 54
3 4 17
13 13
 
 ? ? ? ? ? 54 39 216 221 
 ?? 15 5 ??
1
3
 
 Now, ? ? ? ? ?
1 54
12 13 12. 13.
3 13
 
 =  4 + 54 = 58  
9. The solution curve of the differential equation  
 
? ? ? ? ?
ee
dx
y x log x log y 1 ,
dy
 x > 0, y > 0 passing 
through the point (e, 1) is 
 (1) ?
e
y
log x
x
 (2) ?
2
e
y
log y
x
  
 (3) ?
e
x
log y
y
 (4) 
e
x
2 log y 1
y
?? 
 Ans. (3) 
Sol. 
?? ??
??
?? ??
?? ??
dx x x
ln 1
dy y y
 
 Let ? ? ?
x
t x ty
y
 
 ??
dx dt
ty
dy dy
 
 ? ? ? ?
? ? ?
dt
t y t ln t 1
dy
 
 ? ?
? ?
? ? ?
dt dt dy
y t ln t
dy t ln t y
 
 
? ?
??
??
dt dy
t.ln t y
 
 ??
??
dp dy
py
 let ln t = p 
    ?
1
dt dp
t
 
 ? lnp = lny +c 
 ln(ln t) = ln y + c 
 
?? ??
??
?? ??
?? ??
x
ln ln ln y c
y
 
 at  x = e, y = 1  
 
e
ln ln ln(1) c c 0
1
?? ??
? ? ? ?
?? ??
?? ??
 
 
??
?
??
??
x
ln ln ln y
y
 
 
??
?
??
??
ln y
x
ln e
y
 
 
??
?
??
??
x
ln y
y
 
10. Let ? ?? ? ???????? Z and let A ( ? ?? ?), B (1, 0), C ( ?? ?) 
and D (1, 2) be the vertices of a parallelogram 
ABCD. If AB = 10 and the points A and C lie on 
the line 3y = 2x + 1, then 2 ( ? ?? ? ? ? ? ??? ? ??) is equal 
to  
 (1) 10 (2) 5 
 (3) 12  (4) 8 
Ans.  (4) 
Sol. 
A( ) ? ? ? ? B(1, 0)
D(1, 2)
C( ) ? ? ? ?
 
 Let E is mid point of diagonals 
 
? ? ? ?
?
11
22
 & 
? ? ? ?
?
20
22
 
 2 ? ? ? ?  ? ? ? ? 2 
 
? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 2 2 2 8 
11. Let y = y(x) be the solution of the differential 
equation 
? ?
? ?
?
?
?
tan x y
dy
,
dx sin x sec x sin x tan x
 
? ??
?
??
??
x 0,
2
 satisfying the condition 
? ??
?
??
??
y 2.
4
 
Then, 
? ??
??
??
y
3
 is 
 (1) 
? ?
?
e
3 2 log 3 
 (2) ? ? ?
e
3
2 log 3
2
 
 (3) ? ? ?
e
3 1 2log 3 
 (4) ? ? ?
e
3 2 log 3 
 Ans. (1) 
Sol. 
?
?
??
?
??
??
dy sin x ycos x
1 sin x dx
sin x.cos x sin x.
cos x cos x
 
 
? ?
?
?
?
2
sin x ycos x
sin x 1 sin x
 
 ? ?
2
dy
sec x y.2 cos ec2x
dx
?? 
 ? ? ??
2
dy
2cos ec 2x .y sec x
dx
 
 
dy
p.y Q
dx
?? 
 
 
? ? ?
??
??
pdx 2cosec 2x dx
I.F. e e 
 Let 2x = t 
 ?
dx
21
dt
 
 ?
dt
dx
2
 
 
?
?
?
cosec(t)dt
e 
 
?
?
t
ln tan
2
e 
 
?
??
ln tan x
1
e
tanx
 
 
? ? ??
?
y(IF) Q IF dx c 
 
2
11
y sec x c
tan x tan x
? ? ? ?
?
 
 ??
?
1 dt
y. c
tan x | t |
 for tan x = t 
 ??
1
y. ln | t | c
tan x
 
 
? ? ?? y tan x ln | tan x | c 
 Put 
?
? x,
4
 y = 2 
 2 = ln 1 + c ? c = 2 
 
? ? ?? y | tan x | ln | tan x | 2 
 
? ?
? ??
??
??
??
y 3 ln 3 2
3
 
12. Let ? ? ?
ˆ ˆ ˆ
a 3i j 2k, ? ? ?
ˆ ˆ ˆ
b 4i j 7k and 
? ? ?
ˆ ˆ ˆ
c i 3j 4k be three vectors. If a vectors p 
satisfies ? ? ? p b c b and ?? p a 0 , then 
? ?
? ? ?
ˆ ˆ ˆ
p i j k is equal to 
 (1) 24  
 (2) 36 
 (3) 28   
 (4) 32 
Ans.  (4) 
Sol. ? ? ? ? p b c b 0 
 ? ? ? ? ? p c b 0 
 ? ? ? ? ? ? ? p c b p c b 
 Now, 
? ? ? p.a 0 given 
 So, ? ? ? c.a a.b 0 
 (3 – 3 – 8) + ?(12 + 1 – 14) = 0 
 ? = –8 
 ?? p c 8b 
 ? ? ? ?
ˆ ˆ ˆ
p 31i 11j 52k 
 So, ??
ˆ ˆ ˆ
p.(i j k) 
 = –31 + 11 + 52 
 = 32 
13. The sum of the series ?
? ? ?
24
1
1 3 1 1
   
?
? ? ?
24
2
1 3 2 2
 ?
? ? ?
24
3
1 3 3 3
 ….. up to 10 terms 
is  
 (1) 
45
109
 (2) ?
45
109
 
 (3) 
55
109
  (4) ?
55
109
 
Ans.  (4) 
Sol. General term of the sequence, 
 
r 24
r
T
1 3r r
?
??
 
 
r 4 2 2
r
T
r 2r 1 r
?
? ? ?
 
 
? ?
r 2
22
r
T
r 1 r
?
??
 
 
? ? ? ?
r
22
r
T
r r 1 r r 1
?
? ? ? ?
 
 
? ? ? ?
? ? ? ?
22
r
22
1
r r 1 r r 1
2
T
r r 1 r r 1
??
? ? ? ? ?
??
?
? ? ? ?
 
 
??
??
??
? ? ? ?
??
22
1 1 1
2 r r 1 r r 1
 
 Sum of 10 terms, 
 
10
r
r1
1 1 1 55
T
2 1 109 109
?
? ??
? ? ?
??
?
??
?
 
Read More
357 docs|148 tests

Top Courses for JEE

357 docs|148 tests
Download as PDF
Explore Courses for JEE exam

Top Courses for JEE

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Free

,

practice quizzes

,

video lectures

,

shortcuts and tricks

,

JEE Main 2024 January 31 Shift 1 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025

,

JEE Main 2024 January 31 Shift 1 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025

,

Previous Year Questions with Solutions

,

Extra Questions

,

Sample Paper

,

study material

,

pdf

,

Important questions

,

MCQs

,

JEE Main 2024 January 31 Shift 1 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025

,

Objective type Questions

,

Exam

,

past year papers

,

Viva Questions

,

mock tests for examination

,

ppt

,

Semester Notes

,

Summary

;