Download, print and study this document offline |
Page 1 Section - A 1. Four identical particles of equal masses 1 kg made to move along the circumference of a circle of radius 1 m under the action of their own mutual gravitational attraction. The speed of each particle will be - (1) (1 2 2)G 2 ? (2) G(1 2 2) ? (3) ? ? G 2 2 1 2 ? (4) ? ? G 1 2 2 2 ? Sol. (1) M v F2sin45° 45° FC F1 F2cos45° F2cos45° F2 M v M v F2sin45° F2 R v M 2R ? ?By resolving force F 2 , we get ? F 1 + F 2 cos 45° + F 2 cos 45° ? F 1 + 2F 2 cos 45° = F c F c = centripital force = 2 MV R ? 2 2 GM (2R) + ? ? 2 2 2GM cos45 2R ? ? ? ? ? ? ? ? ? ? ? = 2 MV R ? 2 2 GM 4R + 2 2 2GM 2 2R = 2 MV R ? GM 4R + GM 2.R = V 2 ? V = GM GM 4R 2.R ? ? V = GM 1 2 2 R 4 ? ? ? ? ? ? ? ? ? ? V = 1 2 ? ? GM 1 2 2 R ? (given : mass = 1 kg, radius = 1 m) ? ?v ? ? ? 1 2 G(1 2 2) ? ? 24 th Feb. 2021 | Shift - 1 PHYSICS Page 2 Section - A 1. Four identical particles of equal masses 1 kg made to move along the circumference of a circle of radius 1 m under the action of their own mutual gravitational attraction. The speed of each particle will be - (1) (1 2 2)G 2 ? (2) G(1 2 2) ? (3) ? ? G 2 2 1 2 ? (4) ? ? G 1 2 2 2 ? Sol. (1) M v F2sin45° 45° FC F1 F2cos45° F2cos45° F2 M v M v F2sin45° F2 R v M 2R ? ?By resolving force F 2 , we get ? F 1 + F 2 cos 45° + F 2 cos 45° ? F 1 + 2F 2 cos 45° = F c F c = centripital force = 2 MV R ? 2 2 GM (2R) + ? ? 2 2 2GM cos45 2R ? ? ? ? ? ? ? ? ? ? ? = 2 MV R ? 2 2 GM 4R + 2 2 2GM 2 2R = 2 MV R ? GM 4R + GM 2.R = V 2 ? V = GM GM 4R 2.R ? ? V = GM 1 2 2 R 4 ? ? ? ? ? ? ? ? ? ? V = 1 2 ? ? GM 1 2 2 R ? (given : mass = 1 kg, radius = 1 m) ? ?v ? ? ? 1 2 G(1 2 2) ? ? 24 th Feb. 2021 | Shift - 1 PHYSICS 2. Consider two satellites S 1 and S 2 with periods of revolution 1 hr. and 8 hr. respectively revolving around a planet in circular orbits.The ratio of angular velocity of satellite S 1 to the angular velocity of satellite S 2 is - (1)8 : 1 (2)1 : 8 (3)2 : 1 (4) 1 : 4 Sol. (1) We know that ? = 2 T ? given : Ratio of time period 1 2 T T = 1 8 ? ? ? ? ? ? 1 T ? 1 2 ? ? = 2 1 T T ? 1 2 ? ? = 8 1 ? ? 1 : ? 2 = 8 : 1 3. n mole of a perfect gas undergoes a cyclic process ABCA (see figure) consisting of the following processes – A ?B : Isothermal expansion at temperature T so that the volume is doubled from V 1 to V 2 = 2V 1 and pressure changes from P 1 to P 2 . B ? C : Isobaric compression at pressure P 2 to initial volume V 1 . C ? A : Isochoric change leading to change of pressure from P 2 to P 1 . Total workdone in the complete cycle ABCA is – A B C V1 V2=2V1 V P2 P1 P (1)0 (2)nRT 1 ln2 2 ? ? ? ? ? ? ? (3)nRTln2 (4) nRT 1 ln2 2 ? ? ? ? ? ? ? Page 3 Section - A 1. Four identical particles of equal masses 1 kg made to move along the circumference of a circle of radius 1 m under the action of their own mutual gravitational attraction. The speed of each particle will be - (1) (1 2 2)G 2 ? (2) G(1 2 2) ? (3) ? ? G 2 2 1 2 ? (4) ? ? G 1 2 2 2 ? Sol. (1) M v F2sin45° 45° FC F1 F2cos45° F2cos45° F2 M v M v F2sin45° F2 R v M 2R ? ?By resolving force F 2 , we get ? F 1 + F 2 cos 45° + F 2 cos 45° ? F 1 + 2F 2 cos 45° = F c F c = centripital force = 2 MV R ? 2 2 GM (2R) + ? ? 2 2 2GM cos45 2R ? ? ? ? ? ? ? ? ? ? ? = 2 MV R ? 2 2 GM 4R + 2 2 2GM 2 2R = 2 MV R ? GM 4R + GM 2.R = V 2 ? V = GM GM 4R 2.R ? ? V = GM 1 2 2 R 4 ? ? ? ? ? ? ? ? ? ? V = 1 2 ? ? GM 1 2 2 R ? (given : mass = 1 kg, radius = 1 m) ? ?v ? ? ? 1 2 G(1 2 2) ? ? 24 th Feb. 2021 | Shift - 1 PHYSICS 2. Consider two satellites S 1 and S 2 with periods of revolution 1 hr. and 8 hr. respectively revolving around a planet in circular orbits.The ratio of angular velocity of satellite S 1 to the angular velocity of satellite S 2 is - (1)8 : 1 (2)1 : 8 (3)2 : 1 (4) 1 : 4 Sol. (1) We know that ? = 2 T ? given : Ratio of time period 1 2 T T = 1 8 ? ? ? ? ? ? 1 T ? 1 2 ? ? = 2 1 T T ? 1 2 ? ? = 8 1 ? ? 1 : ? 2 = 8 : 1 3. n mole of a perfect gas undergoes a cyclic process ABCA (see figure) consisting of the following processes – A ?B : Isothermal expansion at temperature T so that the volume is doubled from V 1 to V 2 = 2V 1 and pressure changes from P 1 to P 2 . B ? C : Isobaric compression at pressure P 2 to initial volume V 1 . C ? A : Isochoric change leading to change of pressure from P 2 to P 1 . Total workdone in the complete cycle ABCA is – A B C V1 V2=2V1 V P2 P1 P (1)0 (2)nRT 1 ln2 2 ? ? ? ? ? ? ? (3)nRTln2 (4) nRT 1 ln2 2 ? ? ? ? ? ? ? Sol. (4) P A B C V1 V2=2V1 V P2 P1 A ? B = isotheraml process B ? ?C = isobaric process C ? ?A = isochoric process also, V 2 = 2V 1 work done by gas in the complete cycle ABCA is – ? w = w AB + w BC + w CA ....(1) ? ?w CA = 0, as isochoric process ?w AB = 2P 1 V 1 ln 2 1 v v ? ? ? ? ? ? = 2 nRT ln (2) ?w BC = P 2 (V 1 – V 2 ) = P 2 (V 1 – 2V 1 ) = -P 2 V 1 = -nRT ?Now put the value of w AB , w BC and w CA in equation, we get ? w = 2nRT ln (2) – nRT + 0 ? w = nRT [2ln (2) – 1] ? w = nRT [ln (2) - 1 2 ] ? 4. Two equal capacitors are first connected in series and then in parallel. The ratio of the equivalent capacities capacities in the two cases will be - (1)2 : 1 (2)1 : 4 (3)4 : 1 (4) 1 : 2 Sol. (2) Given that first connection C C 2 1 ? ? 12 1 C = 1 C + 1 C ? C 12 = C 2 Second connection C 34 = C + C = 2 C Page 4 Section - A 1. Four identical particles of equal masses 1 kg made to move along the circumference of a circle of radius 1 m under the action of their own mutual gravitational attraction. The speed of each particle will be - (1) (1 2 2)G 2 ? (2) G(1 2 2) ? (3) ? ? G 2 2 1 2 ? (4) ? ? G 1 2 2 2 ? Sol. (1) M v F2sin45° 45° FC F1 F2cos45° F2cos45° F2 M v M v F2sin45° F2 R v M 2R ? ?By resolving force F 2 , we get ? F 1 + F 2 cos 45° + F 2 cos 45° ? F 1 + 2F 2 cos 45° = F c F c = centripital force = 2 MV R ? 2 2 GM (2R) + ? ? 2 2 2GM cos45 2R ? ? ? ? ? ? ? ? ? ? ? = 2 MV R ? 2 2 GM 4R + 2 2 2GM 2 2R = 2 MV R ? GM 4R + GM 2.R = V 2 ? V = GM GM 4R 2.R ? ? V = GM 1 2 2 R 4 ? ? ? ? ? ? ? ? ? ? V = 1 2 ? ? GM 1 2 2 R ? (given : mass = 1 kg, radius = 1 m) ? ?v ? ? ? 1 2 G(1 2 2) ? ? 24 th Feb. 2021 | Shift - 1 PHYSICS 2. Consider two satellites S 1 and S 2 with periods of revolution 1 hr. and 8 hr. respectively revolving around a planet in circular orbits.The ratio of angular velocity of satellite S 1 to the angular velocity of satellite S 2 is - (1)8 : 1 (2)1 : 8 (3)2 : 1 (4) 1 : 4 Sol. (1) We know that ? = 2 T ? given : Ratio of time period 1 2 T T = 1 8 ? ? ? ? ? ? 1 T ? 1 2 ? ? = 2 1 T T ? 1 2 ? ? = 8 1 ? ? 1 : ? 2 = 8 : 1 3. n mole of a perfect gas undergoes a cyclic process ABCA (see figure) consisting of the following processes – A ?B : Isothermal expansion at temperature T so that the volume is doubled from V 1 to V 2 = 2V 1 and pressure changes from P 1 to P 2 . B ? C : Isobaric compression at pressure P 2 to initial volume V 1 . C ? A : Isochoric change leading to change of pressure from P 2 to P 1 . Total workdone in the complete cycle ABCA is – A B C V1 V2=2V1 V P2 P1 P (1)0 (2)nRT 1 ln2 2 ? ? ? ? ? ? ? (3)nRTln2 (4) nRT 1 ln2 2 ? ? ? ? ? ? ? Sol. (4) P A B C V1 V2=2V1 V P2 P1 A ? B = isotheraml process B ? ?C = isobaric process C ? ?A = isochoric process also, V 2 = 2V 1 work done by gas in the complete cycle ABCA is – ? w = w AB + w BC + w CA ....(1) ? ?w CA = 0, as isochoric process ?w AB = 2P 1 V 1 ln 2 1 v v ? ? ? ? ? ? = 2 nRT ln (2) ?w BC = P 2 (V 1 – V 2 ) = P 2 (V 1 – 2V 1 ) = -P 2 V 1 = -nRT ?Now put the value of w AB , w BC and w CA in equation, we get ? w = 2nRT ln (2) – nRT + 0 ? w = nRT [2ln (2) – 1] ? w = nRT [ln (2) - 1 2 ] ? 4. Two equal capacitors are first connected in series and then in parallel. The ratio of the equivalent capacities capacities in the two cases will be - (1)2 : 1 (2)1 : 4 (3)4 : 1 (4) 1 : 2 Sol. (2) Given that first connection C C 2 1 ? ? 12 1 C = 1 C + 1 C ? C 12 = C 2 Second connection C 34 = C + C = 2 C Now, the ratio of equivalent capacities in the two cases will be – ? 12 34 C C = C / 2 2C ? 12 34 C C = 1 4 C 3 4 C ? 5. A cell E 1 of emf 6V and internal resistance 2 ? is connected with another cell E 2 of emf 4V and internal resistance 8 ? (as shown in the figure). The potential difference across points X and Y is – P E1 6V,2 ? X E2 4v,8 ? Y (1)3.6V (2)10.0V (3)5.6V (4) 2.0V Sol. (3) P E1 6V,2 ? X E2 4v,8 ? Y I I I emf of E 1 = 6v r 1 = 2 ? emf of E 2 = 4 ? r 2 = 8 ? |v x - v y | = potential difference across points x and y E eff = 6 – 4 = 2 V R eq = 2 + 8 = 10 ? So, current in the circuit will be ? ? ?? ? ? eff eq E R ? I = 2 10 = 0.2 A Now, potential difference across points X and Y is |v x - v y | = E + iR ? |v x - v y | = 4 + 0.2 × 8 = 5.6 V ? |v x - v y | = 5.6 v ? Page 5 Section - A 1. Four identical particles of equal masses 1 kg made to move along the circumference of a circle of radius 1 m under the action of their own mutual gravitational attraction. The speed of each particle will be - (1) (1 2 2)G 2 ? (2) G(1 2 2) ? (3) ? ? G 2 2 1 2 ? (4) ? ? G 1 2 2 2 ? Sol. (1) M v F2sin45° 45° FC F1 F2cos45° F2cos45° F2 M v M v F2sin45° F2 R v M 2R ? ?By resolving force F 2 , we get ? F 1 + F 2 cos 45° + F 2 cos 45° ? F 1 + 2F 2 cos 45° = F c F c = centripital force = 2 MV R ? 2 2 GM (2R) + ? ? 2 2 2GM cos45 2R ? ? ? ? ? ? ? ? ? ? ? = 2 MV R ? 2 2 GM 4R + 2 2 2GM 2 2R = 2 MV R ? GM 4R + GM 2.R = V 2 ? V = GM GM 4R 2.R ? ? V = GM 1 2 2 R 4 ? ? ? ? ? ? ? ? ? ? V = 1 2 ? ? GM 1 2 2 R ? (given : mass = 1 kg, radius = 1 m) ? ?v ? ? ? 1 2 G(1 2 2) ? ? 24 th Feb. 2021 | Shift - 1 PHYSICS 2. Consider two satellites S 1 and S 2 with periods of revolution 1 hr. and 8 hr. respectively revolving around a planet in circular orbits.The ratio of angular velocity of satellite S 1 to the angular velocity of satellite S 2 is - (1)8 : 1 (2)1 : 8 (3)2 : 1 (4) 1 : 4 Sol. (1) We know that ? = 2 T ? given : Ratio of time period 1 2 T T = 1 8 ? ? ? ? ? ? 1 T ? 1 2 ? ? = 2 1 T T ? 1 2 ? ? = 8 1 ? ? 1 : ? 2 = 8 : 1 3. n mole of a perfect gas undergoes a cyclic process ABCA (see figure) consisting of the following processes – A ?B : Isothermal expansion at temperature T so that the volume is doubled from V 1 to V 2 = 2V 1 and pressure changes from P 1 to P 2 . B ? C : Isobaric compression at pressure P 2 to initial volume V 1 . C ? A : Isochoric change leading to change of pressure from P 2 to P 1 . Total workdone in the complete cycle ABCA is – A B C V1 V2=2V1 V P2 P1 P (1)0 (2)nRT 1 ln2 2 ? ? ? ? ? ? ? (3)nRTln2 (4) nRT 1 ln2 2 ? ? ? ? ? ? ? Sol. (4) P A B C V1 V2=2V1 V P2 P1 A ? B = isotheraml process B ? ?C = isobaric process C ? ?A = isochoric process also, V 2 = 2V 1 work done by gas in the complete cycle ABCA is – ? w = w AB + w BC + w CA ....(1) ? ?w CA = 0, as isochoric process ?w AB = 2P 1 V 1 ln 2 1 v v ? ? ? ? ? ? = 2 nRT ln (2) ?w BC = P 2 (V 1 – V 2 ) = P 2 (V 1 – 2V 1 ) = -P 2 V 1 = -nRT ?Now put the value of w AB , w BC and w CA in equation, we get ? w = 2nRT ln (2) – nRT + 0 ? w = nRT [2ln (2) – 1] ? w = nRT [ln (2) - 1 2 ] ? 4. Two equal capacitors are first connected in series and then in parallel. The ratio of the equivalent capacities capacities in the two cases will be - (1)2 : 1 (2)1 : 4 (3)4 : 1 (4) 1 : 2 Sol. (2) Given that first connection C C 2 1 ? ? 12 1 C = 1 C + 1 C ? C 12 = C 2 Second connection C 34 = C + C = 2 C Now, the ratio of equivalent capacities in the two cases will be – ? 12 34 C C = C / 2 2C ? 12 34 C C = 1 4 C 3 4 C ? 5. A cell E 1 of emf 6V and internal resistance 2 ? is connected with another cell E 2 of emf 4V and internal resistance 8 ? (as shown in the figure). The potential difference across points X and Y is – P E1 6V,2 ? X E2 4v,8 ? Y (1)3.6V (2)10.0V (3)5.6V (4) 2.0V Sol. (3) P E1 6V,2 ? X E2 4v,8 ? Y I I I emf of E 1 = 6v r 1 = 2 ? emf of E 2 = 4 ? r 2 = 8 ? |v x - v y | = potential difference across points x and y E eff = 6 – 4 = 2 V R eq = 2 + 8 = 10 ? So, current in the circuit will be ? ? ?? ? ? eff eq E R ? I = 2 10 = 0.2 A Now, potential difference across points X and Y is |v x - v y | = E + iR ? |v x - v y | = 4 + 0.2 × 8 = 5.6 V ? |v x - v y | = 5.6 v ? 6. If Y,K and ? are the values of Young’s modulus, bulk modulus and modulus of rigidity of any material respectively. Choose the correct relation for these parameters. (1)K = Y 9 3Y ? ? ? N/m 2 (2) ? = 3YK 9K Y ? N/m 2 (3)Y = 9K 3K ? ? ? N/m 2 (4) Y = 9K 2 3K ? ? ? N/m 2 Sol. (1) ?y = 3k (1 – 2 ?) ? ? ? ? ? ? 1 2 y 1 3k ? ? ? ? ? ? ? ....(1) ? y = 2 ? (1 + ?) ? ? ? = y 2 ? – 1 ....(2) by comparing equation (1) and (2), we get ? ? y 2 ? – 1 = 1 2 y 1 3k ? ? ? ? ? ? ? ? y ? – 2 = 1 – y 3k ? y ? = 1 + 2 – y 3k ? y ? = 3 – y 3k ? y 3k = 3 – y ? ? y 3k = 3 y ? ? ? ? k = y 9 3y ? ? ? ? 7. Two stars of masses m and 2m at a distance d rotate about their common centre of mass in free space. The period of revolution is - (1) ?? 3 d 3Gm (2) 1 2 ? 3 3Gm d (3) 1 2 ? 3 d 3Gm (4) 2 ? 3 3Gm d Sol. (1) 2m m d ? ? 2 G(m)(2m) d = m ? 2 × 2d 3 ? 2 2Gm d = ? 2 × 2d 3Read More
254 docs|1 tests
|
|
Explore Courses for JEE exam
|