Page 1
JEE Mains Previous Year Questions
(2021-2024): Applications of Integrals
2024
Q1 - 2024 (01 Feb Shift 1)
The area enclosed by the curves ???? + 4 ?? = 16 and ?? + ?? = 6 is equal to :
(1) 28 - 30 log
?? ? 2
(2) 30 - 28 log
?? ? 2
(3) 30 - 32 log
?? ? 2
(4) 32 - 30 log
?? ? 2
Q2 - 2024 (01 Feb Shift 2)
Three points O ( 0 , 0 ) , P ( a , a
2
) , Q ( - b , b
2
) , a > 0 , b > 0, are on the parabola ?? = ?? 2
. Let ?? 1
be the area of the region bounded by the line PQ and the parabola, and ?? 2
be the area
of the triangle ???? ?? . If the minimum value of
?? 1
?? 2
is
?? ?? , g c d ? ( ?? , ?? ) = 1, then ?? + ?? is equal
to:
Q3 - 2024 (01 Feb Shift 2)
The sum of squares of all possible values of ?? , for which area of the region bounded by
the parabolas 2 y
2
= kx and ky
2
= 2 ( y - x ) is maximum, is equal to :
Q4 - 2024 (27 Jan Shift 1)
Let the area of the region { ( ?? , ?? ) : ?? - 2 ?? + 4 = 0 , ?? + 2 ?? 2
= 0 , ?? + 4 ?? 2
= 8 , ?? = 0 } be
?? ?? ,
where ?? and n are coprime numbers. Then m + n is equal to
Q5 - 2024 (27 Jan Shift 2)
If the area of the region { ( ?? , ?? ) : 0 = ?? = m i n { 2 ?? , 6 ?? - ?? 2
} } is ?? , then 12 A is equal to.
Q6 - 2024 (29 Jan Shift 1)
Page 2
JEE Mains Previous Year Questions
(2021-2024): Applications of Integrals
2024
Q1 - 2024 (01 Feb Shift 1)
The area enclosed by the curves ???? + 4 ?? = 16 and ?? + ?? = 6 is equal to :
(1) 28 - 30 log
?? ? 2
(2) 30 - 28 log
?? ? 2
(3) 30 - 32 log
?? ? 2
(4) 32 - 30 log
?? ? 2
Q2 - 2024 (01 Feb Shift 2)
Three points O ( 0 , 0 ) , P ( a , a
2
) , Q ( - b , b
2
) , a > 0 , b > 0, are on the parabola ?? = ?? 2
. Let ?? 1
be the area of the region bounded by the line PQ and the parabola, and ?? 2
be the area
of the triangle ???? ?? . If the minimum value of
?? 1
?? 2
is
?? ?? , g c d ? ( ?? , ?? ) = 1, then ?? + ?? is equal
to:
Q3 - 2024 (01 Feb Shift 2)
The sum of squares of all possible values of ?? , for which area of the region bounded by
the parabolas 2 y
2
= kx and ky
2
= 2 ( y - x ) is maximum, is equal to :
Q4 - 2024 (27 Jan Shift 1)
Let the area of the region { ( ?? , ?? ) : ?? - 2 ?? + 4 = 0 , ?? + 2 ?? 2
= 0 , ?? + 4 ?? 2
= 8 , ?? = 0 } be
?? ?? ,
where ?? and n are coprime numbers. Then m + n is equal to
Q5 - 2024 (27 Jan Shift 2)
If the area of the region { ( ?? , ?? ) : 0 = ?? = m i n { 2 ?? , 6 ?? - ?? 2
} } is ?? , then 12 A is equal to.
Q6 - 2024 (29 Jan Shift 1)
The area (in sq. units) of the part of circle ?? 2
+ ?? 2
= 169 which is below the line 5 ?? - ?? =
13 is
????
2 ?? -
65
2
+
?? ?? sin
- 1
? (
12
13
) where ?? , ?? are coprime numbers. Then ?? + ?? is equal to
Q7 - 2024 (29 Jan Shift 2)
Let the area of the region { ( ?? , ?? ) : 0 = ?? = 3 , 0 = ?? = m i n { ?? 2
+ 2 , 2 ?? + 2 } } be ?? . Then 12 A
is equal to
Q8 - 2024 (30 Jan Shift 1)
The area (in square units) of the region bounded by the parabola y
2
= 4 ( x - 2 ) and the
line y = 2x - 8
(1) 8
(2) 9
(3) 6
(4) 7
Q9 - 2024 (30 Jan Shift 2)
Let ?? = ?? ( ?? ) be a curve lying in the first quadrant such that the area enclosed by the line
Y - y = Y
'
( x ) ( X - x ) and the co-ordinate axes, where ( ?? , ?? ) is any point on the curve, is
always
- ?? 2
2 Y
'
( x )
+ 1 , Y
'
( x ) ? 0. If Y ( 1 ) = 1, then 12Y ( 2 ) equals
Q10 - 2024 (30 Jan Shift 2)
The area of the region enclosed by the parabola ( ?? - 2 )
2
= ?? - 1, the line ?? - 2 ?? + 4 =
0 and the positive coordinate axes is
Q11 - 2024 (31 Jan Shift 1)
The area of the region
{ ( ?? , ?? ) : ?? 2
= 4 ?? , ?? < 4 ,
???? ( ?? - 1 ) ( ?? - 2 )
( ?? - 3 ) ( ?? - 4 )
> 0 , ?? ? 3 } is
(1)
16
3
(2)
64
3
(3)
8
3
(4)
32
3
Page 3
JEE Mains Previous Year Questions
(2021-2024): Applications of Integrals
2024
Q1 - 2024 (01 Feb Shift 1)
The area enclosed by the curves ???? + 4 ?? = 16 and ?? + ?? = 6 is equal to :
(1) 28 - 30 log
?? ? 2
(2) 30 - 28 log
?? ? 2
(3) 30 - 32 log
?? ? 2
(4) 32 - 30 log
?? ? 2
Q2 - 2024 (01 Feb Shift 2)
Three points O ( 0 , 0 ) , P ( a , a
2
) , Q ( - b , b
2
) , a > 0 , b > 0, are on the parabola ?? = ?? 2
. Let ?? 1
be the area of the region bounded by the line PQ and the parabola, and ?? 2
be the area
of the triangle ???? ?? . If the minimum value of
?? 1
?? 2
is
?? ?? , g c d ? ( ?? , ?? ) = 1, then ?? + ?? is equal
to:
Q3 - 2024 (01 Feb Shift 2)
The sum of squares of all possible values of ?? , for which area of the region bounded by
the parabolas 2 y
2
= kx and ky
2
= 2 ( y - x ) is maximum, is equal to :
Q4 - 2024 (27 Jan Shift 1)
Let the area of the region { ( ?? , ?? ) : ?? - 2 ?? + 4 = 0 , ?? + 2 ?? 2
= 0 , ?? + 4 ?? 2
= 8 , ?? = 0 } be
?? ?? ,
where ?? and n are coprime numbers. Then m + n is equal to
Q5 - 2024 (27 Jan Shift 2)
If the area of the region { ( ?? , ?? ) : 0 = ?? = m i n { 2 ?? , 6 ?? - ?? 2
} } is ?? , then 12 A is equal to.
Q6 - 2024 (29 Jan Shift 1)
The area (in sq. units) of the part of circle ?? 2
+ ?? 2
= 169 which is below the line 5 ?? - ?? =
13 is
????
2 ?? -
65
2
+
?? ?? sin
- 1
? (
12
13
) where ?? , ?? are coprime numbers. Then ?? + ?? is equal to
Q7 - 2024 (29 Jan Shift 2)
Let the area of the region { ( ?? , ?? ) : 0 = ?? = 3 , 0 = ?? = m i n { ?? 2
+ 2 , 2 ?? + 2 } } be ?? . Then 12 A
is equal to
Q8 - 2024 (30 Jan Shift 1)
The area (in square units) of the region bounded by the parabola y
2
= 4 ( x - 2 ) and the
line y = 2x - 8
(1) 8
(2) 9
(3) 6
(4) 7
Q9 - 2024 (30 Jan Shift 2)
Let ?? = ?? ( ?? ) be a curve lying in the first quadrant such that the area enclosed by the line
Y - y = Y
'
( x ) ( X - x ) and the co-ordinate axes, where ( ?? , ?? ) is any point on the curve, is
always
- ?? 2
2 Y
'
( x )
+ 1 , Y
'
( x ) ? 0. If Y ( 1 ) = 1, then 12Y ( 2 ) equals
Q10 - 2024 (30 Jan Shift 2)
The area of the region enclosed by the parabola ( ?? - 2 )
2
= ?? - 1, the line ?? - 2 ?? + 4 =
0 and the positive coordinate axes is
Q11 - 2024 (31 Jan Shift 1)
The area of the region
{ ( ?? , ?? ) : ?? 2
= 4 ?? , ?? < 4 ,
???? ( ?? - 1 ) ( ?? - 2 )
( ?? - 3 ) ( ?? - 4 )
> 0 , ?? ? 3 } is
(1)
16
3
(2)
64
3
(3)
8
3
(4)
32
3
Q12 - 2024 (31 Jan Shift 2)
The area of the region enclosed by the parabola ?? = 4 ?? - ?? 2
and 3 ?? = ( ?? - 4 )
2
is equal
to
(1)
32
9
(2) 4
(3) 6
(4)
14
3
Answer Key
Q1 (3) Q2 ( 7 ) Q3 (8) Q4 (119)
Q5 (304) Q6 (171) Q7 (164) Q8 (2)
Q9 (20) Q10 (5) Q11 (4) Q12 (3)
Solutions
Q1
???? + 4 ?? = 16 ? , ? ?? + ?? = 6
?? ( ?? + 4 ) = 16
x + y = 6
on solving, (1) \ & (2)
we get ?? = 4 , ?? = - 2
Page 4
JEE Mains Previous Year Questions
(2021-2024): Applications of Integrals
2024
Q1 - 2024 (01 Feb Shift 1)
The area enclosed by the curves ???? + 4 ?? = 16 and ?? + ?? = 6 is equal to :
(1) 28 - 30 log
?? ? 2
(2) 30 - 28 log
?? ? 2
(3) 30 - 32 log
?? ? 2
(4) 32 - 30 log
?? ? 2
Q2 - 2024 (01 Feb Shift 2)
Three points O ( 0 , 0 ) , P ( a , a
2
) , Q ( - b , b
2
) , a > 0 , b > 0, are on the parabola ?? = ?? 2
. Let ?? 1
be the area of the region bounded by the line PQ and the parabola, and ?? 2
be the area
of the triangle ???? ?? . If the minimum value of
?? 1
?? 2
is
?? ?? , g c d ? ( ?? , ?? ) = 1, then ?? + ?? is equal
to:
Q3 - 2024 (01 Feb Shift 2)
The sum of squares of all possible values of ?? , for which area of the region bounded by
the parabolas 2 y
2
= kx and ky
2
= 2 ( y - x ) is maximum, is equal to :
Q4 - 2024 (27 Jan Shift 1)
Let the area of the region { ( ?? , ?? ) : ?? - 2 ?? + 4 = 0 , ?? + 2 ?? 2
= 0 , ?? + 4 ?? 2
= 8 , ?? = 0 } be
?? ?? ,
where ?? and n are coprime numbers. Then m + n is equal to
Q5 - 2024 (27 Jan Shift 2)
If the area of the region { ( ?? , ?? ) : 0 = ?? = m i n { 2 ?? , 6 ?? - ?? 2
} } is ?? , then 12 A is equal to.
Q6 - 2024 (29 Jan Shift 1)
The area (in sq. units) of the part of circle ?? 2
+ ?? 2
= 169 which is below the line 5 ?? - ?? =
13 is
????
2 ?? -
65
2
+
?? ?? sin
- 1
? (
12
13
) where ?? , ?? are coprime numbers. Then ?? + ?? is equal to
Q7 - 2024 (29 Jan Shift 2)
Let the area of the region { ( ?? , ?? ) : 0 = ?? = 3 , 0 = ?? = m i n { ?? 2
+ 2 , 2 ?? + 2 } } be ?? . Then 12 A
is equal to
Q8 - 2024 (30 Jan Shift 1)
The area (in square units) of the region bounded by the parabola y
2
= 4 ( x - 2 ) and the
line y = 2x - 8
(1) 8
(2) 9
(3) 6
(4) 7
Q9 - 2024 (30 Jan Shift 2)
Let ?? = ?? ( ?? ) be a curve lying in the first quadrant such that the area enclosed by the line
Y - y = Y
'
( x ) ( X - x ) and the co-ordinate axes, where ( ?? , ?? ) is any point on the curve, is
always
- ?? 2
2 Y
'
( x )
+ 1 , Y
'
( x ) ? 0. If Y ( 1 ) = 1, then 12Y ( 2 ) equals
Q10 - 2024 (30 Jan Shift 2)
The area of the region enclosed by the parabola ( ?? - 2 )
2
= ?? - 1, the line ?? - 2 ?? + 4 =
0 and the positive coordinate axes is
Q11 - 2024 (31 Jan Shift 1)
The area of the region
{ ( ?? , ?? ) : ?? 2
= 4 ?? , ?? < 4 ,
???? ( ?? - 1 ) ( ?? - 2 )
( ?? - 3 ) ( ?? - 4 )
> 0 , ?? ? 3 } is
(1)
16
3
(2)
64
3
(3)
8
3
(4)
32
3
Q12 - 2024 (31 Jan Shift 2)
The area of the region enclosed by the parabola ?? = 4 ?? - ?? 2
and 3 ?? = ( ?? - 4 )
2
is equal
to
(1)
32
9
(2) 4
(3) 6
(4)
14
3
Answer Key
Q1 (3) Q2 ( 7 ) Q3 (8) Q4 (119)
Q5 (304) Q6 (171) Q7 (164) Q8 (2)
Q9 (20) Q10 (5) Q11 (4) Q12 (3)
Solutions
Q1
???? + 4 ?? = 16 ? , ? ?? + ?? = 6
?? ( ?? + 4 ) = 16
x + y = 6
on solving, (1) \ & (2)
we get ?? = 4 , ?? = - 2
Area = ? ?
4
- 2
? ( ( 6 - ?? ) - (
16
?? + 4
) ) ????
= 30 - 32ln ? 2
Q2
???? : - ?? - ?? 2
=
?? 2
- ?? 2
?? + ?? ( ?? - ?? )
?? - ?? 2
= ( ?? - ?? ) ?? - ( ?? - ?? ) ??
?? = ( ?? - ?? ) ?? + ????
?? 1
= ?
- ?? ?? ? ( ( ?? - ?? ) ?? + ???? - ?? 2
) ????
= ( ?? - ?? )
?? 2
2
+ ( ???? ) ?? -
?? 3
3
|
- ?? ??
Page 5
JEE Mains Previous Year Questions
(2021-2024): Applications of Integrals
2024
Q1 - 2024 (01 Feb Shift 1)
The area enclosed by the curves ???? + 4 ?? = 16 and ?? + ?? = 6 is equal to :
(1) 28 - 30 log
?? ? 2
(2) 30 - 28 log
?? ? 2
(3) 30 - 32 log
?? ? 2
(4) 32 - 30 log
?? ? 2
Q2 - 2024 (01 Feb Shift 2)
Three points O ( 0 , 0 ) , P ( a , a
2
) , Q ( - b , b
2
) , a > 0 , b > 0, are on the parabola ?? = ?? 2
. Let ?? 1
be the area of the region bounded by the line PQ and the parabola, and ?? 2
be the area
of the triangle ???? ?? . If the minimum value of
?? 1
?? 2
is
?? ?? , g c d ? ( ?? , ?? ) = 1, then ?? + ?? is equal
to:
Q3 - 2024 (01 Feb Shift 2)
The sum of squares of all possible values of ?? , for which area of the region bounded by
the parabolas 2 y
2
= kx and ky
2
= 2 ( y - x ) is maximum, is equal to :
Q4 - 2024 (27 Jan Shift 1)
Let the area of the region { ( ?? , ?? ) : ?? - 2 ?? + 4 = 0 , ?? + 2 ?? 2
= 0 , ?? + 4 ?? 2
= 8 , ?? = 0 } be
?? ?? ,
where ?? and n are coprime numbers. Then m + n is equal to
Q5 - 2024 (27 Jan Shift 2)
If the area of the region { ( ?? , ?? ) : 0 = ?? = m i n { 2 ?? , 6 ?? - ?? 2
} } is ?? , then 12 A is equal to.
Q6 - 2024 (29 Jan Shift 1)
The area (in sq. units) of the part of circle ?? 2
+ ?? 2
= 169 which is below the line 5 ?? - ?? =
13 is
????
2 ?? -
65
2
+
?? ?? sin
- 1
? (
12
13
) where ?? , ?? are coprime numbers. Then ?? + ?? is equal to
Q7 - 2024 (29 Jan Shift 2)
Let the area of the region { ( ?? , ?? ) : 0 = ?? = 3 , 0 = ?? = m i n { ?? 2
+ 2 , 2 ?? + 2 } } be ?? . Then 12 A
is equal to
Q8 - 2024 (30 Jan Shift 1)
The area (in square units) of the region bounded by the parabola y
2
= 4 ( x - 2 ) and the
line y = 2x - 8
(1) 8
(2) 9
(3) 6
(4) 7
Q9 - 2024 (30 Jan Shift 2)
Let ?? = ?? ( ?? ) be a curve lying in the first quadrant such that the area enclosed by the line
Y - y = Y
'
( x ) ( X - x ) and the co-ordinate axes, where ( ?? , ?? ) is any point on the curve, is
always
- ?? 2
2 Y
'
( x )
+ 1 , Y
'
( x ) ? 0. If Y ( 1 ) = 1, then 12Y ( 2 ) equals
Q10 - 2024 (30 Jan Shift 2)
The area of the region enclosed by the parabola ( ?? - 2 )
2
= ?? - 1, the line ?? - 2 ?? + 4 =
0 and the positive coordinate axes is
Q11 - 2024 (31 Jan Shift 1)
The area of the region
{ ( ?? , ?? ) : ?? 2
= 4 ?? , ?? < 4 ,
???? ( ?? - 1 ) ( ?? - 2 )
( ?? - 3 ) ( ?? - 4 )
> 0 , ?? ? 3 } is
(1)
16
3
(2)
64
3
(3)
8
3
(4)
32
3
Q12 - 2024 (31 Jan Shift 2)
The area of the region enclosed by the parabola ?? = 4 ?? - ?? 2
and 3 ?? = ( ?? - 4 )
2
is equal
to
(1)
32
9
(2) 4
(3) 6
(4)
14
3
Answer Key
Q1 (3) Q2 ( 7 ) Q3 (8) Q4 (119)
Q5 (304) Q6 (171) Q7 (164) Q8 (2)
Q9 (20) Q10 (5) Q11 (4) Q12 (3)
Solutions
Q1
???? + 4 ?? = 16 ? , ? ?? + ?? = 6
?? ( ?? + 4 ) = 16
x + y = 6
on solving, (1) \ & (2)
we get ?? = 4 , ?? = - 2
Area = ? ?
4
- 2
? ( ( 6 - ?? ) - (
16
?? + 4
) ) ????
= 30 - 32ln ? 2
Q2
???? : - ?? - ?? 2
=
?? 2
- ?? 2
?? + ?? ( ?? - ?? )
?? - ?? 2
= ( ?? - ?? ) ?? - ( ?? - ?? ) ??
?? = ( ?? - ?? ) ?? + ????
?? 1
= ?
- ?? ?? ? ( ( ?? - ?? ) ?? + ???? - ?? 2
) ????
= ( ?? - ?? )
?? 2
2
+ ( ???? ) ?? -
?? 3
3
|
- ?? ??
=
( ?? - ?? )
2
( ?? + ?? )
2
+ ???? ( ?? + ?? ) -
( ?? 3
+ ?? 3
)
3
?? 1
?? 2
=
( ?? - ?? )
2
2
+ ???? -
( ?? 2
+ ?? 2
- ???? )
3
athon
????
2
=
3 ( ?? - ?? )
2
+ 6 ???? - 2 ( ?? 2
+ ?? 2
- ???? )
3 ????
=
1
3
[
a
b
+
b
a
+ 2 ]
=
4
3
=
m
n
? m + n = 7
Q3
?? ?? 2
= 2 ( ?? - ?? )
2 y
2
= kx
Point of intersection ?
ky
2
= (
y - 2 y
2
k
)
y = 0 ? ky = 2 (
1 - 2y
k
)
ky +
4y
k
= 2
y =
2
k +
4
k
=
2k
k
2
+ 4
?? = ?
0
2 ?? ?? 2
+ 4
? ( ( ?? -
?? ?? 2
2
) - (
2 ?? 2
?? ) ) · ????
=
?? 2
2
- (
?? 2
+
2
?? ) ·
?? 3
3
|
0
2 ?? ?? 2
+ 4
= (
2 ?? ?? 2
+ 4
)
2
[
1
2
-
?? 2
+ 4
2 ?? ×
1
3
×
2 ?? ?? 2
+ 4
]
Read More