Page 1
JEE Mains Previous Year Questions
(2021-2024): Complex Number and
Quadratic Equations
2024
Q1 - 2024 (01 Feb Shift 1)
Let S = {?? ? ?? : |?? - 1| = 1 and ( v 2 - 1) ( ?? + ?? ?)- ?? ( ?? - ?? ?)= 2v 2}. Let z
1
, z
2
? ?? be such
that
|?? 1
| = max
?? ??? ?|?? | and |?? 2
| = min
?? ??? ?|?? |. Then |v 2?? 1
- ?? 2
|
2
equals :
(1) 1
(2) 4
(3) 3
(4) 2
Q2 - 2024 (01 Feb Shift 1)
Let P = {z ? C: |z + 2 - 3i| = 1} and ?? = {?? ? C: ?? ( 1 + ?? )+ ?? ?( 1 - ?? )= -8}. Let in P n
Q, |z - 3 + 2i| be maximum and minimum at ?? 1
and ?? 2
respectively. If |?? 1
|
2
+ 2|?? |
2
= ?? +
?? v 2, where ?? , ?? are integers, then ?? + ?? equals
Q3 - 2024 (01 Feb Shift 2)
If ?? is a complex number such that |?? | = 1, then the minimum value of |?? +
1
2
( 3 + 4?? ) | is:
[We changed options. In official NTA paper no option was correct.]
(1)
5
2
(2) 2
(3) 3
(4) 0
Q4 - 2024 (27 Jan Shift 1)
Page 2
JEE Mains Previous Year Questions
(2021-2024): Complex Number and
Quadratic Equations
2024
Q1 - 2024 (01 Feb Shift 1)
Let S = {?? ? ?? : |?? - 1| = 1 and ( v 2 - 1) ( ?? + ?? ?)- ?? ( ?? - ?? ?)= 2v 2}. Let z
1
, z
2
? ?? be such
that
|?? 1
| = max
?? ??? ?|?? | and |?? 2
| = min
?? ??? ?|?? |. Then |v 2?? 1
- ?? 2
|
2
equals :
(1) 1
(2) 4
(3) 3
(4) 2
Q2 - 2024 (01 Feb Shift 1)
Let P = {z ? C: |z + 2 - 3i| = 1} and ?? = {?? ? C: ?? ( 1 + ?? )+ ?? ?( 1 - ?? )= -8}. Let in P n
Q, |z - 3 + 2i| be maximum and minimum at ?? 1
and ?? 2
respectively. If |?? 1
|
2
+ 2|?? |
2
= ?? +
?? v 2, where ?? , ?? are integers, then ?? + ?? equals
Q3 - 2024 (01 Feb Shift 2)
If ?? is a complex number such that |?? | = 1, then the minimum value of |?? +
1
2
( 3 + 4?? ) | is:
[We changed options. In official NTA paper no option was correct.]
(1)
5
2
(2) 2
(3) 3
(4) 0
Q4 - 2024 (27 Jan Shift 1)
If ?? = {?? ? ?? : |?? - ?? | = |?? + ?? | = |?? - 1|}, then, ?? ( ?? ) is:
(1) 1
(2) 0
(3) 3
(4) 2
Q5 - 2024 (27 Jan Shift 1)
If ?? satisfies the equation ?? 2
+ ?? + 1 = 0 and ( 1 + ?? )
7
= A + B?? + C
2
, A, B, C = 0, then
5( 3 A - 2 B - C) is equal to
Q6 - 2024 (27 Jan Shift 2)
Let the complex numbers ?? and
1
?? ?
lie on the circles |?? - ?? 0
|
2
= 4 and |?? - ?? 0
|
2
= 16
respectively, where z
0
= 1 + i. Then, the value of 100|?? |
2
is.
Q7 - 2024 (29 Jan Shift 1)
If ?? =
1
2
- 2?? , is such that |?? + 1| = ???? + ?? ( 1 + ?? ) , ?? = v -1 and ?? , ?? ? ?? , then ?? + ?? is
equal to
(1) -4
(2) 3
(3) 2
(4) -1
Q8 - 2024 (29 Jan Shift 1)
Let ?? , ?? be the roots of the equation ?? 2
- ?? + 2 = 0 with Im ( ?? )> Im ( ?? ) . Then ?? 6
+ ?? 4
+
?? 4
- 5?? 2
is equal to
Q9 - 2024 (29 Jan Shift 2)
Let ?? and ?? respectively be the modulus and amplitude of the complex number ?? = 2 -
?? ( 2tan
5?? 8
) , then ( ?? , ?? ) is equal to
(1) ( 2sec
3?? 8
,
3?? 8
)
Page 3
JEE Mains Previous Year Questions
(2021-2024): Complex Number and
Quadratic Equations
2024
Q1 - 2024 (01 Feb Shift 1)
Let S = {?? ? ?? : |?? - 1| = 1 and ( v 2 - 1) ( ?? + ?? ?)- ?? ( ?? - ?? ?)= 2v 2}. Let z
1
, z
2
? ?? be such
that
|?? 1
| = max
?? ??? ?|?? | and |?? 2
| = min
?? ??? ?|?? |. Then |v 2?? 1
- ?? 2
|
2
equals :
(1) 1
(2) 4
(3) 3
(4) 2
Q2 - 2024 (01 Feb Shift 1)
Let P = {z ? C: |z + 2 - 3i| = 1} and ?? = {?? ? C: ?? ( 1 + ?? )+ ?? ?( 1 - ?? )= -8}. Let in P n
Q, |z - 3 + 2i| be maximum and minimum at ?? 1
and ?? 2
respectively. If |?? 1
|
2
+ 2|?? |
2
= ?? +
?? v 2, where ?? , ?? are integers, then ?? + ?? equals
Q3 - 2024 (01 Feb Shift 2)
If ?? is a complex number such that |?? | = 1, then the minimum value of |?? +
1
2
( 3 + 4?? ) | is:
[We changed options. In official NTA paper no option was correct.]
(1)
5
2
(2) 2
(3) 3
(4) 0
Q4 - 2024 (27 Jan Shift 1)
If ?? = {?? ? ?? : |?? - ?? | = |?? + ?? | = |?? - 1|}, then, ?? ( ?? ) is:
(1) 1
(2) 0
(3) 3
(4) 2
Q5 - 2024 (27 Jan Shift 1)
If ?? satisfies the equation ?? 2
+ ?? + 1 = 0 and ( 1 + ?? )
7
= A + B?? + C
2
, A, B, C = 0, then
5( 3 A - 2 B - C) is equal to
Q6 - 2024 (27 Jan Shift 2)
Let the complex numbers ?? and
1
?? ?
lie on the circles |?? - ?? 0
|
2
= 4 and |?? - ?? 0
|
2
= 16
respectively, where z
0
= 1 + i. Then, the value of 100|?? |
2
is.
Q7 - 2024 (29 Jan Shift 1)
If ?? =
1
2
- 2?? , is such that |?? + 1| = ???? + ?? ( 1 + ?? ) , ?? = v -1 and ?? , ?? ? ?? , then ?? + ?? is
equal to
(1) -4
(2) 3
(3) 2
(4) -1
Q8 - 2024 (29 Jan Shift 1)
Let ?? , ?? be the roots of the equation ?? 2
- ?? + 2 = 0 with Im ( ?? )> Im ( ?? ) . Then ?? 6
+ ?? 4
+
?? 4
- 5?? 2
is equal to
Q9 - 2024 (29 Jan Shift 2)
Let ?? and ?? respectively be the modulus and amplitude of the complex number ?? = 2 -
?? ( 2tan
5?? 8
) , then ( ?? , ?? ) is equal to
(1) ( 2sec
3?? 8
,
3?? 8
)
(2) ( 2sec
3?? 8
,
5?? 8
)
(3) ( 2sec
5?? 8
,
3?? 8
)
(4) ( 2sec
11?? 8
,
11?? 8
)
Q10 - 2024 (29 Jan Shift 2)
Let ?? , ?? be the roots of the equation ?? 2
- v 6?? + 3 = 0 such that Im ( ?? )> Im ( ?? ) . Let ?? , ??
be integers not divisible by 3 and ?? be a natural number such that
?? 99
?? + ?? 98
= 3
n
( a +
ib) , i = v -1. Then n + a + b is equal to
Q11 - 2024 (30 Jan Shift 1)
If ?? = ?? + ???? , ???? ? 0, satisfies the equation ?? 2
+ ?? ?? ? = 0, then |?? 2
| is equal to :
(1) 9
(2) 1
(3) 4
(4)
1
4
Q12 - 2024 (30 Jan Shift 2)
If z is a complex number, then the number of common roots of the equation ?? 1985
+
?? 100
+ 1 = 0 and ?? 3
+ 2?? 2
+ 2?? + 1 = 0, is equal to :
(1) 1
(2) 2
(3) 0
(4) 3
Q13 - 2024 (31 Jan Shift 1)
If ?? denotes the number of solutions of |1 - ?? |
?? = 2
?? and ?? = (
|?? |
arg ( ?? )
) , where ?? =
?? 4
( 1 +
?? )
4
(
1-v ?? i
v ?? +i
+
v ?? -i
1+v ?? i
), i = v-1, then the distance of the point ( ?? , ?? ) from the line 4?? - 3?? =
7 is
Q14 - 2024 (31 Jan Shift 2)
Page 4
JEE Mains Previous Year Questions
(2021-2024): Complex Number and
Quadratic Equations
2024
Q1 - 2024 (01 Feb Shift 1)
Let S = {?? ? ?? : |?? - 1| = 1 and ( v 2 - 1) ( ?? + ?? ?)- ?? ( ?? - ?? ?)= 2v 2}. Let z
1
, z
2
? ?? be such
that
|?? 1
| = max
?? ??? ?|?? | and |?? 2
| = min
?? ??? ?|?? |. Then |v 2?? 1
- ?? 2
|
2
equals :
(1) 1
(2) 4
(3) 3
(4) 2
Q2 - 2024 (01 Feb Shift 1)
Let P = {z ? C: |z + 2 - 3i| = 1} and ?? = {?? ? C: ?? ( 1 + ?? )+ ?? ?( 1 - ?? )= -8}. Let in P n
Q, |z - 3 + 2i| be maximum and minimum at ?? 1
and ?? 2
respectively. If |?? 1
|
2
+ 2|?? |
2
= ?? +
?? v 2, where ?? , ?? are integers, then ?? + ?? equals
Q3 - 2024 (01 Feb Shift 2)
If ?? is a complex number such that |?? | = 1, then the minimum value of |?? +
1
2
( 3 + 4?? ) | is:
[We changed options. In official NTA paper no option was correct.]
(1)
5
2
(2) 2
(3) 3
(4) 0
Q4 - 2024 (27 Jan Shift 1)
If ?? = {?? ? ?? : |?? - ?? | = |?? + ?? | = |?? - 1|}, then, ?? ( ?? ) is:
(1) 1
(2) 0
(3) 3
(4) 2
Q5 - 2024 (27 Jan Shift 1)
If ?? satisfies the equation ?? 2
+ ?? + 1 = 0 and ( 1 + ?? )
7
= A + B?? + C
2
, A, B, C = 0, then
5( 3 A - 2 B - C) is equal to
Q6 - 2024 (27 Jan Shift 2)
Let the complex numbers ?? and
1
?? ?
lie on the circles |?? - ?? 0
|
2
= 4 and |?? - ?? 0
|
2
= 16
respectively, where z
0
= 1 + i. Then, the value of 100|?? |
2
is.
Q7 - 2024 (29 Jan Shift 1)
If ?? =
1
2
- 2?? , is such that |?? + 1| = ???? + ?? ( 1 + ?? ) , ?? = v -1 and ?? , ?? ? ?? , then ?? + ?? is
equal to
(1) -4
(2) 3
(3) 2
(4) -1
Q8 - 2024 (29 Jan Shift 1)
Let ?? , ?? be the roots of the equation ?? 2
- ?? + 2 = 0 with Im ( ?? )> Im ( ?? ) . Then ?? 6
+ ?? 4
+
?? 4
- 5?? 2
is equal to
Q9 - 2024 (29 Jan Shift 2)
Let ?? and ?? respectively be the modulus and amplitude of the complex number ?? = 2 -
?? ( 2tan
5?? 8
) , then ( ?? , ?? ) is equal to
(1) ( 2sec
3?? 8
,
3?? 8
)
(2) ( 2sec
3?? 8
,
5?? 8
)
(3) ( 2sec
5?? 8
,
3?? 8
)
(4) ( 2sec
11?? 8
,
11?? 8
)
Q10 - 2024 (29 Jan Shift 2)
Let ?? , ?? be the roots of the equation ?? 2
- v 6?? + 3 = 0 such that Im ( ?? )> Im ( ?? ) . Let ?? , ??
be integers not divisible by 3 and ?? be a natural number such that
?? 99
?? + ?? 98
= 3
n
( a +
ib) , i = v -1. Then n + a + b is equal to
Q11 - 2024 (30 Jan Shift 1)
If ?? = ?? + ???? , ???? ? 0, satisfies the equation ?? 2
+ ?? ?? ? = 0, then |?? 2
| is equal to :
(1) 9
(2) 1
(3) 4
(4)
1
4
Q12 - 2024 (30 Jan Shift 2)
If z is a complex number, then the number of common roots of the equation ?? 1985
+
?? 100
+ 1 = 0 and ?? 3
+ 2?? 2
+ 2?? + 1 = 0, is equal to :
(1) 1
(2) 2
(3) 0
(4) 3
Q13 - 2024 (31 Jan Shift 1)
If ?? denotes the number of solutions of |1 - ?? |
?? = 2
?? and ?? = (
|?? |
arg ( ?? )
) , where ?? =
?? 4
( 1 +
?? )
4
(
1-v ?? i
v ?? +i
+
v ?? -i
1+v ?? i
), i = v-1, then the distance of the point ( ?? , ?? ) from the line 4?? - 3?? =
7 is
Q14 - 2024 (31 Jan Shift 2)
Let ?? 1
and ?? 2
be two complex number such that ?? 1
+ ?? 2
= 5 and ?? 1
3
+ ?? 2
3
= 20 + 15?? .
Then |?? 1
4
+ ?? 2
4
| equals-
(1) 30v 3
(2) 75
(3) 15v 15
(4) 25v 3
Q15 - 2024 (01 Feb Shift 1)
Let ?? = {?? ? ?? : ( v 3 + v 2)
?? + ( v 3 - v 2)
?? = 10}.
Then the number of elements in S is :
(1) 4
(2) 0
(3) 2
(4) 1
Q16 - 2024 (01 Feb Shift 2)
Let ?? and ?? be the roots of the equation px
2
+ qx - ?? = 0, where ?? ? 0. If ?? , ?? and ?? be
the consecutive terms of a non-constant G.P and
1
?? +
1
?? =
3
4
, then the value of ( ?? - ?? )
2
is
:
(1)
80
9
(2) 9
(3)
20
3
(4) 8
Q17 - 2024 (27 Jan Shift 2)
If ?? , ?? are the roots of the equation, ?? 2
- ?? - 1 = 0 and ?? ?? = 2023?? ?? + 2024?? ?? , then
(1) 2 S
12
= S
11
+ S
10
(2) S
12
= S
11
+ S
10
(3) 2 S
11
= S
12
+ S
10
Page 5
JEE Mains Previous Year Questions
(2021-2024): Complex Number and
Quadratic Equations
2024
Q1 - 2024 (01 Feb Shift 1)
Let S = {?? ? ?? : |?? - 1| = 1 and ( v 2 - 1) ( ?? + ?? ?)- ?? ( ?? - ?? ?)= 2v 2}. Let z
1
, z
2
? ?? be such
that
|?? 1
| = max
?? ??? ?|?? | and |?? 2
| = min
?? ??? ?|?? |. Then |v 2?? 1
- ?? 2
|
2
equals :
(1) 1
(2) 4
(3) 3
(4) 2
Q2 - 2024 (01 Feb Shift 1)
Let P = {z ? C: |z + 2 - 3i| = 1} and ?? = {?? ? C: ?? ( 1 + ?? )+ ?? ?( 1 - ?? )= -8}. Let in P n
Q, |z - 3 + 2i| be maximum and minimum at ?? 1
and ?? 2
respectively. If |?? 1
|
2
+ 2|?? |
2
= ?? +
?? v 2, where ?? , ?? are integers, then ?? + ?? equals
Q3 - 2024 (01 Feb Shift 2)
If ?? is a complex number such that |?? | = 1, then the minimum value of |?? +
1
2
( 3 + 4?? ) | is:
[We changed options. In official NTA paper no option was correct.]
(1)
5
2
(2) 2
(3) 3
(4) 0
Q4 - 2024 (27 Jan Shift 1)
If ?? = {?? ? ?? : |?? - ?? | = |?? + ?? | = |?? - 1|}, then, ?? ( ?? ) is:
(1) 1
(2) 0
(3) 3
(4) 2
Q5 - 2024 (27 Jan Shift 1)
If ?? satisfies the equation ?? 2
+ ?? + 1 = 0 and ( 1 + ?? )
7
= A + B?? + C
2
, A, B, C = 0, then
5( 3 A - 2 B - C) is equal to
Q6 - 2024 (27 Jan Shift 2)
Let the complex numbers ?? and
1
?? ?
lie on the circles |?? - ?? 0
|
2
= 4 and |?? - ?? 0
|
2
= 16
respectively, where z
0
= 1 + i. Then, the value of 100|?? |
2
is.
Q7 - 2024 (29 Jan Shift 1)
If ?? =
1
2
- 2?? , is such that |?? + 1| = ???? + ?? ( 1 + ?? ) , ?? = v -1 and ?? , ?? ? ?? , then ?? + ?? is
equal to
(1) -4
(2) 3
(3) 2
(4) -1
Q8 - 2024 (29 Jan Shift 1)
Let ?? , ?? be the roots of the equation ?? 2
- ?? + 2 = 0 with Im ( ?? )> Im ( ?? ) . Then ?? 6
+ ?? 4
+
?? 4
- 5?? 2
is equal to
Q9 - 2024 (29 Jan Shift 2)
Let ?? and ?? respectively be the modulus and amplitude of the complex number ?? = 2 -
?? ( 2tan
5?? 8
) , then ( ?? , ?? ) is equal to
(1) ( 2sec
3?? 8
,
3?? 8
)
(2) ( 2sec
3?? 8
,
5?? 8
)
(3) ( 2sec
5?? 8
,
3?? 8
)
(4) ( 2sec
11?? 8
,
11?? 8
)
Q10 - 2024 (29 Jan Shift 2)
Let ?? , ?? be the roots of the equation ?? 2
- v 6?? + 3 = 0 such that Im ( ?? )> Im ( ?? ) . Let ?? , ??
be integers not divisible by 3 and ?? be a natural number such that
?? 99
?? + ?? 98
= 3
n
( a +
ib) , i = v -1. Then n + a + b is equal to
Q11 - 2024 (30 Jan Shift 1)
If ?? = ?? + ???? , ???? ? 0, satisfies the equation ?? 2
+ ?? ?? ? = 0, then |?? 2
| is equal to :
(1) 9
(2) 1
(3) 4
(4)
1
4
Q12 - 2024 (30 Jan Shift 2)
If z is a complex number, then the number of common roots of the equation ?? 1985
+
?? 100
+ 1 = 0 and ?? 3
+ 2?? 2
+ 2?? + 1 = 0, is equal to :
(1) 1
(2) 2
(3) 0
(4) 3
Q13 - 2024 (31 Jan Shift 1)
If ?? denotes the number of solutions of |1 - ?? |
?? = 2
?? and ?? = (
|?? |
arg ( ?? )
) , where ?? =
?? 4
( 1 +
?? )
4
(
1-v ?? i
v ?? +i
+
v ?? -i
1+v ?? i
), i = v-1, then the distance of the point ( ?? , ?? ) from the line 4?? - 3?? =
7 is
Q14 - 2024 (31 Jan Shift 2)
Let ?? 1
and ?? 2
be two complex number such that ?? 1
+ ?? 2
= 5 and ?? 1
3
+ ?? 2
3
= 20 + 15?? .
Then |?? 1
4
+ ?? 2
4
| equals-
(1) 30v 3
(2) 75
(3) 15v 15
(4) 25v 3
Q15 - 2024 (01 Feb Shift 1)
Let ?? = {?? ? ?? : ( v 3 + v 2)
?? + ( v 3 - v 2)
?? = 10}.
Then the number of elements in S is :
(1) 4
(2) 0
(3) 2
(4) 1
Q16 - 2024 (01 Feb Shift 2)
Let ?? and ?? be the roots of the equation px
2
+ qx - ?? = 0, where ?? ? 0. If ?? , ?? and ?? be
the consecutive terms of a non-constant G.P and
1
?? +
1
?? =
3
4
, then the value of ( ?? - ?? )
2
is
:
(1)
80
9
(2) 9
(3)
20
3
(4) 8
Q17 - 2024 (27 Jan Shift 2)
If ?? , ?? are the roots of the equation, ?? 2
- ?? - 1 = 0 and ?? ?? = 2023?? ?? + 2024?? ?? , then
(1) 2 S
12
= S
11
+ S
10
(2) S
12
= S
11
+ S
10
(3) 2 S
11
= S
12
+ S
10
(4) ?? 11
= ?? 10
+ ?? 12
Q18 - 2024 (29 Jan Shift 2)
Let the set ?? = {( ?? , ?? )| ?? 2
- 2
?? = 2023 , ?? , ?? ? N}. Then ?
( ?? ,?? ) =?? ?( ?? + ?? ) is equal to
Q19 - 2024 (30 Jan Shift 1)
Let ?? , ?? ? N be roots of equation x
2
- 70x + ?? = 0, where
?? 2
,
?? 3
? N. If ?? assumes the
minimum possible
value, then
( v ?? -1+v?? -1) ( ?? +35)
|?? -?? |
is equal to
Q20 - 2024 (30 Jan Shift 2)
The number of real solutions of the equation ?? ( ?? 2
+ 3|?? | + 5|?? - 1| + 6|?? - 2|)= 0 is
Q21 - 2024 (31 Jan Shift 1)
For 0 < c < b < a, let ( a + b - 2c) x
2
+ ( b + c - 2a) x + ( ?? + ?? - 2?? )= 0 and ?? ? 1 be one
of its root.
Then, among the two statements
(I) If ?? ? ( -1,0) , then b cannot be the geometric mean of a and c
(II) If ?? ? ( 0,1) , then ?? may be the geometric mean of a and c
(1) Both (I) and (II) are true
(2) Neither (I) nor (II) is true
(3) Only (II) is true
(4) Only (I) is true
Q22 - 2024 (31 Jan Shift 1)
Let ?? be the set of positive integral values of a for which
?? 2
+2( ?? +1) ?? +9?? +4
?? 2
-8x+32
< 0, ??? ? R.
Then, the number of elements in S is :
(1) 1
(2) 0
(3) 8
Read More