Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

Physics for IIT JAM, UGC - NET, CSIR NET

Created by: Akhilesh Thakur

Physics : Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

The document Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev is a part of the Physics Course Physics for IIT JAM, UGC - NET, CSIR NET.
All you need of Physics at this link: Physics

GENERATING FUNCTION

Legendre polynomials appear in many different mathematical and physical situations. (1) They may originate as solutions of the Legendre ODE which we have already encountered in the separation of variables for Laplace’s equation, Helmholtz’s equation, and similar ODEs in spherical polar coordinates. (2) They enter as a consequence of a Rodrigues’ formula. (3) They arise as a consequence of demanding a complete, orthogonal set of functions over the interval [−1, 1] (Gram–Schmidt orthogonalization . (4) In quantum mechanics they (really the spherical harmonics, represent angular momentum eigenfunctions. (5) They are generated by a generating function. We introduce Legendre polynomials here by way of a generating function.

Physical Basis — Electrostatics

As with Bessel functions, it is convenient to introduce the Legendre polynomials by means of a generating function, which here appears in a physical context. Consider an electric charge q placed on the z-axis at z = a . As shown in Fig. 12.1, the electrostatic potential of charge q is

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev (SI units).                        (12.1)

We want to express the electrostatic potential in terms of the spherical polar coordinates r and θ (the coordinate ϕ is absent because of symmetry about the z-axis). Using the law of cosines in Fig. 12.1, we obtain

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev(12.2)

 

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

Legendre Polynomials 

Consider the case of r> a or, more precisely, r 2 > |a 2 − 2ar cos θ |. The radical in Eq. (12.2) may be expanded in a binomial series and then rearranged in powers of (a / r ).
The Legendre polynomial Pn (cos θ) (see Fig. 12.2) is defined as the coefficient of the nth power in

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev      (12.3)

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

Dropping the factor q/4πε0 r and using x and t instead of cos θ and a/ r , respectively, we have

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

Equation (12.4) is our generating function formula. In the next section it is shown that |Pn (cos θ)|≤ 1, which means that the series expansion (Eq. (12.4)) is convergent for |t | < 1.1 Indeed, the series is convergent for |t |= 1 except for |x |= 1.
In physical applications Eq. (12.4) often appears in the vector form 

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

where

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev            (12.4b)

and

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev         (12.4c)

Using the binomial theorem (Section 5.6) and Exercise 8.1.15, we expand the generating function as (compare Eq. (12.33))

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

For the first few Legendre polynomials, say, P0 ,P1 , and P2 , we need the coefficients of t0 , t1 , and t2 . These powers of t appear only in the terms n = 0, 1, and 2, and hence we may limit our attention to the first three terms of the infinite series:

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

Then, from Eq. (12.4) (and uniqueness of power series),

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

We repeat this limited development in a vector framework later in this section.

In employing a general treatment, we find that the binomial expansion of the (2xt − t 2)n factor yields the double series

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

From Eq. (5.64)  (rearranging the order of summation), Eq. (12.6) becomes

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

with the t n independent of the index k . Now, equating our two power series (Eqs. (12.4) and (12.7)) term by term, we have

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev(12.8)

Hence, for n even, Pn has only even powers of x and even parity (see Eq. (12.37)), and odd powers and odd parity for odd n.


Linear Electric Multipoles

Returning to the electric charge on the z-axis, we demonstrate the usefulness and power of the generating function by adding a charge −q at z =−a , as shown in Fig. 12.3. The

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

 potential becomes

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev           (12.9)
and by using the law of cosines, we have

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

Clearly, the second radical is like the first, except that a has been replaced by −a . Then, using Eq. (12.4), we obtain

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

The first term (and dominant term for r ≫ a )is

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev(12.11)

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

 

Vector Expansion 

We consider the electrostatic potential produced by a distributed charge ρ(r2 ):

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

This expression has already appeared in Sections 1.16 and 9.7. Taking the denominator of the integrand, using first the law of cosines and then a binomial expansion, yields (see Fig. 1.42)

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

(For r1 = 1,r= t , and r1 · r2 = xt , Eq. (12.12b) reduces to the generating function, Eq. (12.4).) The first term in the square bracket, 1, yields a potential

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev(12.12c)

The integral is just the total charge. This part of the total potential is an electric monopole.
The second term yields

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev(12.12d)

where the integral is the dipole moment whose charge density ρ(r2 ) is weighted by a moment arm r2 . We have an electric dipole potential. For atomic or nuclear states of definite parity, ρ(r2 ) is an even function and the dipole integral is identically zero.
The last two terms, both of order (r2 /r1), may be handled by using Cartesian coordinates:

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

Rearranging variables to take the xcomponents outside the integral yields

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev(12.12e)

This is the electric quadrupole term. We note that the square bracket in the integrand forms a symmetric, zero-trace tensor.

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

Before leaving multipole fields, perhaps we should emphasize three points.

  • First, an electric (or magnetic) multipole is isolated and well defined only if all lowerorder multipoles vanish. For instance, the potential of one charge q at z = a was expanded in a series of Legendre polynomials. Although we refer to the P1 (cos θ) term in this expansion as a dipole term, it should be remembered that this term exists only because of our choice of coordinates. We also have a monopole, P0 (cos θ).
  • Second, in physical systems we do not encounter pure multipoles. As an example, the potential of the finite dipole ( q at z = a, −q at z =−a ) contained a P3 (cos θ) term. These higher-order terms may be eliminated by shrinking the multipole to a point multipole, in this case keeping the product qa constant (a → 0,q →∞) to maintain the same dipole moment.
  •  Third, the multipole theory is not restricted to electrical phenomena. Planetary configurations are described in terms of mass multipoles, Gravitational radiation depends on the time behavior of mass quadrupoles. (The gravitational radiation field is a tensor field. The radiation quanta, gravitons, carry two units of angular momentum.)

It might also be noted that a multipole expansion is actually a decomposition into the irreducible representations of the rotation group.

 

Extension to Ultraspherical Polynomials

The generating function used here, g(t , x ), is actually a special case of a more general generating function,

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev (12.13)
Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

RECURRENCE RELATIONS AND SPECIAL PROPERTIES

Recurrence Relations

The Legendre polynomial generating function provides a convenient way of deriving the recurrence relations4 and some special properties. If our generating function (Eq. (12.4)) is differentiated with respect to t , we obtain

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

By substituting Eq. (12.4) into this and rearranging terms, we have

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

The left-hand side is a power series in t . Since this power series vanishes for all values of t , the coefficient of each power of t is equal to zero; that is, our power series is unique (Section 5.7). These coefficients are found by separating the individual summations and using distinctive summation indices:

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

Now, letting m = n + 1,s = n − 1, we find

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

.This is another three-term recurrence relation, similar to (but not identical with) the recurrence relation for Bessel functions. With this recurrence relation we may easily construct the higher Legendre polynomials. If we take n = 1 and insert the easily found values of P0 (x ) and P1 (x ) (Exercise 12.1.7 or Eq. (12.8)), we obtain

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev(12.18)

or

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev(12.19)

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

 

Differential Equations

More information about the behavior of the Legendre polynomials can be obtained if we now differentiate Eq. (12.4) with respect to x . This gives

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

or

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

As before, the coefficient of each power of t is set equal to zero and we obtain

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

A more useful relation may be found by differentiating Eq. (12.17) with respect to x and multiplying by 2. To this we add (2n + 1) times Eq. (12.22), canceling the Pn′ term. The result is

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

From Eqs. (12.22) and (12.23) numerous additional equations may be developed,5 including

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

 

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

 The previous equations, Eqs. (12.22) to (12.27), are all first-order ODEs, but with polynomials of two different indices. The price for having all indices alike is a second-order differential equation. Equation (12.28) is Legendre’s ODE. We now see that the polynomials Pn (x ) generated by the power series for (1 − 2xt + t 2 )−1/2 satisfy Legendre’s equation, which, of course, is why they are called Legendre polynomials.
In Eq. (12.28) differentiation is with respect to x(x = cos θ). Frequently, we encounter Legendre’s equation expressed in terms of differentiation with respect to θ :

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

Special Values

Our generating function provides still more information about the Legendre polynomials.
If we set x = 1, Eq. (12.4) becomes

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

using a binomial expansion or the geometric series, Example 5.1.1. But Eq. (12.4) for x = 1 defines

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

Comparing the two series expansions (uniqueness of power series, Section 5.7), we have

Pn (1) = 1.                           (12.31)

If we let x =−1 in Eq. (12.4) and use

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

this shows that

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev(12.32)

For obtaining these results, we find that the generating function is more convenient than the explicit series form, Eq. (12.8).
If we take x = 0 in Eq. (12.4), using the binomial expansion

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

we have6

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

These results also follow from Eq. (12.8) by inspection.

 

Parity

Some of these results are special cases of the parity property of the Legendre polynomials.

We refer once more to Eqs. (12.4) and (12.8). If we replace x by −x and t by −t ,the generating function is unchanged. Hence

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

Comparing these two series, we have

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

that is, the polynomial functions are odd or even (with respect to x = 0,θ = π/2) according to whether the index n is odd or even. This is the parity,7 or reflection, property that plays such an important role in quantum mechanics. For central forces the index n is a measure of the orbital angular momentum, thus linking parity and orbital angular momentum.
This parity property is confirmed by the series solution and for the special values tabulated in Table 12.1. It might also be noted that Eq. (12.37) may be predicted by inspection of Eq. (12.17), the recurrence relation. Specifically, if Pn−1 (x ) and xPn (x ) are even, then Pn+1 (x ) must be even.

 

Upper and Lower Bounds for Pn(cos θ)

Finally, in addition to these results, our generating function enables us to set an upper limit on |Pn (cos θ)|.Wehave

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev

This series, Eq. (12.39b), is clearly a maximum when θ = 0 and cos mθ = 1. But for x = cos θ = 1, Eq. (12.31) shows that P(1) = 1. Therefore

Legendre Special Function (Part - 1)- Mathematical Methods of Physics, UGC - NET Physics Physics Notes | EduRev(12.39c)

A fringe benefit of Eq. (12.39b) is that it shows that our Legendre polynomial is a linear combination of cos mθ . This means that the Legendre polynomials form a complete set for any functions that may be expanded by a Fourier cosine series (Section 14.1) over the interval [0,π ].

  • In this section various useful properties of the Legendre polynomials are derived from the generating function, Eq. (12.4).
  • The explicit series representation, Eq. (12.8), offers an alternate and sometimes superior approach.

Dynamic Test

Content Category

Related Searches

UGC - NET Physics Physics Notes | EduRev

,

Important questions

,

Sample Paper

,

Legendre Special Function (Part - 1)- Mathematical Methods of Physics

,

Viva Questions

,

pdf

,

ppt

,

study material

,

mock tests for examination

,

Objective type Questions

,

video lectures

,

Summary

,

Legendre Special Function (Part - 1)- Mathematical Methods of Physics

,

Previous Year Questions with Solutions

,

Legendre Special Function (Part - 1)- Mathematical Methods of Physics

,

shortcuts and tricks

,

UGC - NET Physics Physics Notes | EduRev

,

Free

,

Extra Questions

,

past year papers

,

UGC - NET Physics Physics Notes | EduRev

,

Semester Notes

,

practice quizzes

,

Exam

,

MCQs

;