Math - Question paper, Class 10, CBSE, NCERT Class 10 Notes | EduRev

Class 10 : Math - Question paper, Class 10, CBSE, NCERT Class 10 Notes | EduRev

 Page 1


1 P.T.O. 30/1
MATHEMATICS
xf.kr xf.kr xf.kr xf.kr xf.kr
Time allowed : 3 hours Maximum Marks: 80
fu/kkZfjr le; % 3 ?k.Vs vf/kdre vad % 80
General Instuctions :
(i) All questions are compulsory.
(ii) The question paper consists of 25 questions divided into three sections —A, B and
C. Section A contains 7 questions of 2 marks each, Section B is of 12 questions of
3 marks each and Section C is of 6 questions of 5 marks each.
(iii) There is no overall choice. However, an internal choice has been provided in two
questions of two marks each, two questions of three marks each and two questions
of five marks each.
(iv) In question on construction, the drawing should be neat and exactly as per the given
measurements.
(v) Use of calculators is not permitted. However , you may ask for Mathematical tables.
lekU; funsZ'k % lekU; funsZ'k % lekU; funsZ'k % lekU; funsZ'k % lekU; funsZ'k %
(i) lHkh iz'u vfuok;Z gSaA
Roll No.
Series RKM
Code  No.
30/1
Please check that this question paper contains 11 printed pages.
Code number given on the right hand side of the question paper should be written on the
title page of the answer-book by the condidate.
Please check that this question paper contains 25 questions.
Please write down the serial number of the question before attempting it.
Ñi;k tk¡p dj ysa fd bl iz'u&i=k esa eqfnzr i`"B 11 gSaA
iz'u&i=k esa nkfgus gkFk dh vksj fn, x, dksM uEcj dks Nk=k mÙkj&iqfLrdk ds eq[k&i`"B ij fy[ksaA
Ñi;k tk¡p dj ysa fd bl iz'u&i=k esa 25 iz'u gSaA
Ñi;k iz'u dk mÙkj fy[kuk 'kq: djus ls igys] iz'u dk Øekad vo'; fy[ksaA
dksM ua- dksM ua- dksM ua- dksM ua- dksM ua-
jksy ua-
Page 2


1 P.T.O. 30/1
MATHEMATICS
xf.kr xf.kr xf.kr xf.kr xf.kr
Time allowed : 3 hours Maximum Marks: 80
fu/kkZfjr le; % 3 ?k.Vs vf/kdre vad % 80
General Instuctions :
(i) All questions are compulsory.
(ii) The question paper consists of 25 questions divided into three sections —A, B and
C. Section A contains 7 questions of 2 marks each, Section B is of 12 questions of
3 marks each and Section C is of 6 questions of 5 marks each.
(iii) There is no overall choice. However, an internal choice has been provided in two
questions of two marks each, two questions of three marks each and two questions
of five marks each.
(iv) In question on construction, the drawing should be neat and exactly as per the given
measurements.
(v) Use of calculators is not permitted. However , you may ask for Mathematical tables.
lekU; funsZ'k % lekU; funsZ'k % lekU; funsZ'k % lekU; funsZ'k % lekU; funsZ'k %
(i) lHkh iz'u vfuok;Z gSaA
Roll No.
Series RKM
Code  No.
30/1
Please check that this question paper contains 11 printed pages.
Code number given on the right hand side of the question paper should be written on the
title page of the answer-book by the condidate.
Please check that this question paper contains 25 questions.
Please write down the serial number of the question before attempting it.
Ñi;k tk¡p dj ysa fd bl iz'u&i=k esa eqfnzr i`"B 11 gSaA
iz'u&i=k esa nkfgus gkFk dh vksj fn, x, dksM uEcj dks Nk=k mÙkj&iqfLrdk ds eq[k&i`"B ij fy[ksaA
Ñi;k tk¡p dj ysa fd bl iz'u&i=k esa 25 iz'u gSaA
Ñi;k iz'u dk mÙkj fy[kuk 'kq: djus ls igys] iz'u dk Øekad vo'; fy[ksaA
dksM ua- dksM ua- dksM ua- dksM ua- dksM ua-
jksy ua-
2 30/1
(ii) bu iz'u&i=k esa 25 25 25 25 25 iz'u gSa tks rhu [k.Mksa — v] c vkSj l esa c¡Vs gq, gSaA [k.M v esa nks&nks nks&nks nks&nks nks&nks nks&nks
vad okys 7 7 7 7 7 iz'u] [k.M c esa rhu&rhu rhu&rhu rhu&rhu rhu&rhu rhu&rhu vad okys 12 12 12 12 12 iz'u rFkk [k.M l esa ik¡p&ik¡p ik¡p&ik¡p ik¡p&ik¡p ik¡p&ik¡p ik¡p&ik¡p vad okys
6 6 6 6 6 iz'u 'kkfey gSaA
(iii) iz'u&i=k esa dksbZ lexz O;kid fodYi ugha gSA fQj Hkh nks&nks vadksa okys nks iz'uksa] rhu&rhu
vadksa okys nks iz'uksa rFkk ik¡p&ik¡p vadksa okys nks iz'uksa esa vkarfjd fodYi fn, x, gSaA
(iv) jpuk okys iz'u esa vkjs[ku LoPN gks vkSj fn, x, ekiu ds loZFkk vuq:i gksA
(v) dSydqysVj ds iz;ksx dh vuqefr ugha gSA ysfdu ;fn vko';drk gks rks vki xf.krh;
lkjf.k;ksa dh ek¡x dj ldrs gSaA
SECTION   A
[k.M v [k.M v [k.M v [k.M v [k.M v
Questions number 1 to 7 carry 2 marks each.
iz'u la[;k 1 ls 7 rd izR;sd iz'u ds 2 vad gSaA
1. Find the LCM of    and  .
 rFkk  dk y?kqre lekioR;Z Kkr dhft,A
2. Solve for x and y :
8x —9y = 6xy
10x + 6y = 19xy
             OR
Solve for x and y :
x rFkk y ds fy, gy dhft, %
8x —9y = 6xy
10x + 6y = 19xy
      vFkok      vFkok      vFkok      vFkok      vFkok
x rFkk y ds fy, gy dhft, %
3. In an A.P ., the sum of its first n terms is   n
2
 + 2n.   Find its 18
th
  term.
,d lekUrj Js<+h ds izFke n inksa dk ;ksxQy n
2
 + 2n gSA bldk 18ok¡ in Kkr dhft,A
Page 3


1 P.T.O. 30/1
MATHEMATICS
xf.kr xf.kr xf.kr xf.kr xf.kr
Time allowed : 3 hours Maximum Marks: 80
fu/kkZfjr le; % 3 ?k.Vs vf/kdre vad % 80
General Instuctions :
(i) All questions are compulsory.
(ii) The question paper consists of 25 questions divided into three sections —A, B and
C. Section A contains 7 questions of 2 marks each, Section B is of 12 questions of
3 marks each and Section C is of 6 questions of 5 marks each.
(iii) There is no overall choice. However, an internal choice has been provided in two
questions of two marks each, two questions of three marks each and two questions
of five marks each.
(iv) In question on construction, the drawing should be neat and exactly as per the given
measurements.
(v) Use of calculators is not permitted. However , you may ask for Mathematical tables.
lekU; funsZ'k % lekU; funsZ'k % lekU; funsZ'k % lekU; funsZ'k % lekU; funsZ'k %
(i) lHkh iz'u vfuok;Z gSaA
Roll No.
Series RKM
Code  No.
30/1
Please check that this question paper contains 11 printed pages.
Code number given on the right hand side of the question paper should be written on the
title page of the answer-book by the condidate.
Please check that this question paper contains 25 questions.
Please write down the serial number of the question before attempting it.
Ñi;k tk¡p dj ysa fd bl iz'u&i=k esa eqfnzr i`"B 11 gSaA
iz'u&i=k esa nkfgus gkFk dh vksj fn, x, dksM uEcj dks Nk=k mÙkj&iqfLrdk ds eq[k&i`"B ij fy[ksaA
Ñi;k tk¡p dj ysa fd bl iz'u&i=k esa 25 iz'u gSaA
Ñi;k iz'u dk mÙkj fy[kuk 'kq: djus ls igys] iz'u dk Øekad vo'; fy[ksaA
dksM ua- dksM ua- dksM ua- dksM ua- dksM ua-
jksy ua-
2 30/1
(ii) bu iz'u&i=k esa 25 25 25 25 25 iz'u gSa tks rhu [k.Mksa — v] c vkSj l esa c¡Vs gq, gSaA [k.M v esa nks&nks nks&nks nks&nks nks&nks nks&nks
vad okys 7 7 7 7 7 iz'u] [k.M c esa rhu&rhu rhu&rhu rhu&rhu rhu&rhu rhu&rhu vad okys 12 12 12 12 12 iz'u rFkk [k.M l esa ik¡p&ik¡p ik¡p&ik¡p ik¡p&ik¡p ik¡p&ik¡p ik¡p&ik¡p vad okys
6 6 6 6 6 iz'u 'kkfey gSaA
(iii) iz'u&i=k esa dksbZ lexz O;kid fodYi ugha gSA fQj Hkh nks&nks vadksa okys nks iz'uksa] rhu&rhu
vadksa okys nks iz'uksa rFkk ik¡p&ik¡p vadksa okys nks iz'uksa esa vkarfjd fodYi fn, x, gSaA
(iv) jpuk okys iz'u esa vkjs[ku LoPN gks vkSj fn, x, ekiu ds loZFkk vuq:i gksA
(v) dSydqysVj ds iz;ksx dh vuqefr ugha gSA ysfdu ;fn vko';drk gks rks vki xf.krh;
lkjf.k;ksa dh ek¡x dj ldrs gSaA
SECTION   A
[k.M v [k.M v [k.M v [k.M v [k.M v
Questions number 1 to 7 carry 2 marks each.
iz'u la[;k 1 ls 7 rd izR;sd iz'u ds 2 vad gSaA
1. Find the LCM of    and  .
 rFkk  dk y?kqre lekioR;Z Kkr dhft,A
2. Solve for x and y :
8x —9y = 6xy
10x + 6y = 19xy
             OR
Solve for x and y :
x rFkk y ds fy, gy dhft, %
8x —9y = 6xy
10x + 6y = 19xy
      vFkok      vFkok      vFkok      vFkok      vFkok
x rFkk y ds fy, gy dhft, %
3. In an A.P ., the sum of its first n terms is   n
2
 + 2n.   Find its 18
th
  term.
,d lekUrj Js<+h ds izFke n inksa dk ;ksxQy n
2
 + 2n gSA bldk 18ok¡ in Kkr dhft,A
3 P.T.O. 30/1
4. In Figure 1, two circles touch each other externally at C. Prove that the common tangent
at C bisects the other two common tangents.
OR
D is any point on the side BC of a  ABC such that  ADC =  BAC. Prove that
CA
2
 = BC.CD.
vkÑfr 1 esa] nks o`Ùk ijLij fcUnq C ij ckár% Li'kZ djrs gSaA fl) dhft, fd fcUnq C ls mHk;fu"B
Li'kZ js[kk vU; nks mHk;fu"B Li'kZ js[kkvksa dks lef}Hkkftr djrh gSA
vFkok vFkok vFkok vFkok vFkok
,d  ABC dh Hkqtk BC ij dksbZ fcUnq D bl izdkj fLFkr gS fd  ADC =  BAC. fl)
dhft, fd CA
2
 = BC.CD.
5. Find the mean of the following distribution :
Class Frequency
0-10 8
10-20 12
20-30 10
30-40 11
40-50 9
Page 4


1 P.T.O. 30/1
MATHEMATICS
xf.kr xf.kr xf.kr xf.kr xf.kr
Time allowed : 3 hours Maximum Marks: 80
fu/kkZfjr le; % 3 ?k.Vs vf/kdre vad % 80
General Instuctions :
(i) All questions are compulsory.
(ii) The question paper consists of 25 questions divided into three sections —A, B and
C. Section A contains 7 questions of 2 marks each, Section B is of 12 questions of
3 marks each and Section C is of 6 questions of 5 marks each.
(iii) There is no overall choice. However, an internal choice has been provided in two
questions of two marks each, two questions of three marks each and two questions
of five marks each.
(iv) In question on construction, the drawing should be neat and exactly as per the given
measurements.
(v) Use of calculators is not permitted. However , you may ask for Mathematical tables.
lekU; funsZ'k % lekU; funsZ'k % lekU; funsZ'k % lekU; funsZ'k % lekU; funsZ'k %
(i) lHkh iz'u vfuok;Z gSaA
Roll No.
Series RKM
Code  No.
30/1
Please check that this question paper contains 11 printed pages.
Code number given on the right hand side of the question paper should be written on the
title page of the answer-book by the condidate.
Please check that this question paper contains 25 questions.
Please write down the serial number of the question before attempting it.
Ñi;k tk¡p dj ysa fd bl iz'u&i=k esa eqfnzr i`"B 11 gSaA
iz'u&i=k esa nkfgus gkFk dh vksj fn, x, dksM uEcj dks Nk=k mÙkj&iqfLrdk ds eq[k&i`"B ij fy[ksaA
Ñi;k tk¡p dj ysa fd bl iz'u&i=k esa 25 iz'u gSaA
Ñi;k iz'u dk mÙkj fy[kuk 'kq: djus ls igys] iz'u dk Øekad vo'; fy[ksaA
dksM ua- dksM ua- dksM ua- dksM ua- dksM ua-
jksy ua-
2 30/1
(ii) bu iz'u&i=k esa 25 25 25 25 25 iz'u gSa tks rhu [k.Mksa — v] c vkSj l esa c¡Vs gq, gSaA [k.M v esa nks&nks nks&nks nks&nks nks&nks nks&nks
vad okys 7 7 7 7 7 iz'u] [k.M c esa rhu&rhu rhu&rhu rhu&rhu rhu&rhu rhu&rhu vad okys 12 12 12 12 12 iz'u rFkk [k.M l esa ik¡p&ik¡p ik¡p&ik¡p ik¡p&ik¡p ik¡p&ik¡p ik¡p&ik¡p vad okys
6 6 6 6 6 iz'u 'kkfey gSaA
(iii) iz'u&i=k esa dksbZ lexz O;kid fodYi ugha gSA fQj Hkh nks&nks vadksa okys nks iz'uksa] rhu&rhu
vadksa okys nks iz'uksa rFkk ik¡p&ik¡p vadksa okys nks iz'uksa esa vkarfjd fodYi fn, x, gSaA
(iv) jpuk okys iz'u esa vkjs[ku LoPN gks vkSj fn, x, ekiu ds loZFkk vuq:i gksA
(v) dSydqysVj ds iz;ksx dh vuqefr ugha gSA ysfdu ;fn vko';drk gks rks vki xf.krh;
lkjf.k;ksa dh ek¡x dj ldrs gSaA
SECTION   A
[k.M v [k.M v [k.M v [k.M v [k.M v
Questions number 1 to 7 carry 2 marks each.
iz'u la[;k 1 ls 7 rd izR;sd iz'u ds 2 vad gSaA
1. Find the LCM of    and  .
 rFkk  dk y?kqre lekioR;Z Kkr dhft,A
2. Solve for x and y :
8x —9y = 6xy
10x + 6y = 19xy
             OR
Solve for x and y :
x rFkk y ds fy, gy dhft, %
8x —9y = 6xy
10x + 6y = 19xy
      vFkok      vFkok      vFkok      vFkok      vFkok
x rFkk y ds fy, gy dhft, %
3. In an A.P ., the sum of its first n terms is   n
2
 + 2n.   Find its 18
th
  term.
,d lekUrj Js<+h ds izFke n inksa dk ;ksxQy n
2
 + 2n gSA bldk 18ok¡ in Kkr dhft,A
3 P.T.O. 30/1
4. In Figure 1, two circles touch each other externally at C. Prove that the common tangent
at C bisects the other two common tangents.
OR
D is any point on the side BC of a  ABC such that  ADC =  BAC. Prove that
CA
2
 = BC.CD.
vkÑfr 1 esa] nks o`Ùk ijLij fcUnq C ij ckár% Li'kZ djrs gSaA fl) dhft, fd fcUnq C ls mHk;fu"B
Li'kZ js[kk vU; nks mHk;fu"B Li'kZ js[kkvksa dks lef}Hkkftr djrh gSA
vFkok vFkok vFkok vFkok vFkok
,d  ABC dh Hkqtk BC ij dksbZ fcUnq D bl izdkj fLFkr gS fd  ADC =  BAC. fl)
dhft, fd CA
2
 = BC.CD.
5. Find the mean of the following distribution :
Class Frequency
0-10 8
10-20 12
20-30 10
30-40 11
40-50 9
4 30/1
fuEu caVu dk ek/; Kkr dhft, %
oxZ ckjEckjrk
0-10 8
10-20 12
20-30 10
30-40 11
40-50 9
6. A ceiling fan is marked at Rs. 970 cash or for Rs. 210 as cash down payment followed
by three equal monthly instalments of Rs. 260. Find the rate of interest charged under
the instalment plan.
,d Nr ds ia[ks dk udn ewY; 970 #- gS vFkok og 210 #- ds udn Hkqxrku ds lkFk 260 #-
dh rhu leku ekfld fdLrksa ij miyC/k gSA fdLr ;kstuk ds vUrxZr C;kt dh nj Kkr
dhft,A
7. A box contains 5 red balls, 4 green balls and 7 white balls. A ball is drawn at random
from the box. Find the probability that the ball drawn is
(a) white.
(b) neither red nor white.
,d ckWDl esa 5 yky xsansa] 4 gjh xsansa rFkk 7 lQsn xsansa gSaA ckWDl esa ls ,d xsan ;kn`PN;k fudkyh
xbZA izkf;drk Kkr dhft, fd fudkyh xbZ xsan
¼v½ lQsn gSA
¼c½ u rks yky gS vkSj u gh lQsn gSA
Page 5


1 P.T.O. 30/1
MATHEMATICS
xf.kr xf.kr xf.kr xf.kr xf.kr
Time allowed : 3 hours Maximum Marks: 80
fu/kkZfjr le; % 3 ?k.Vs vf/kdre vad % 80
General Instuctions :
(i) All questions are compulsory.
(ii) The question paper consists of 25 questions divided into three sections —A, B and
C. Section A contains 7 questions of 2 marks each, Section B is of 12 questions of
3 marks each and Section C is of 6 questions of 5 marks each.
(iii) There is no overall choice. However, an internal choice has been provided in two
questions of two marks each, two questions of three marks each and two questions
of five marks each.
(iv) In question on construction, the drawing should be neat and exactly as per the given
measurements.
(v) Use of calculators is not permitted. However , you may ask for Mathematical tables.
lekU; funsZ'k % lekU; funsZ'k % lekU; funsZ'k % lekU; funsZ'k % lekU; funsZ'k %
(i) lHkh iz'u vfuok;Z gSaA
Roll No.
Series RKM
Code  No.
30/1
Please check that this question paper contains 11 printed pages.
Code number given on the right hand side of the question paper should be written on the
title page of the answer-book by the condidate.
Please check that this question paper contains 25 questions.
Please write down the serial number of the question before attempting it.
Ñi;k tk¡p dj ysa fd bl iz'u&i=k esa eqfnzr i`"B 11 gSaA
iz'u&i=k esa nkfgus gkFk dh vksj fn, x, dksM uEcj dks Nk=k mÙkj&iqfLrdk ds eq[k&i`"B ij fy[ksaA
Ñi;k tk¡p dj ysa fd bl iz'u&i=k esa 25 iz'u gSaA
Ñi;k iz'u dk mÙkj fy[kuk 'kq: djus ls igys] iz'u dk Øekad vo'; fy[ksaA
dksM ua- dksM ua- dksM ua- dksM ua- dksM ua-
jksy ua-
2 30/1
(ii) bu iz'u&i=k esa 25 25 25 25 25 iz'u gSa tks rhu [k.Mksa — v] c vkSj l esa c¡Vs gq, gSaA [k.M v esa nks&nks nks&nks nks&nks nks&nks nks&nks
vad okys 7 7 7 7 7 iz'u] [k.M c esa rhu&rhu rhu&rhu rhu&rhu rhu&rhu rhu&rhu vad okys 12 12 12 12 12 iz'u rFkk [k.M l esa ik¡p&ik¡p ik¡p&ik¡p ik¡p&ik¡p ik¡p&ik¡p ik¡p&ik¡p vad okys
6 6 6 6 6 iz'u 'kkfey gSaA
(iii) iz'u&i=k esa dksbZ lexz O;kid fodYi ugha gSA fQj Hkh nks&nks vadksa okys nks iz'uksa] rhu&rhu
vadksa okys nks iz'uksa rFkk ik¡p&ik¡p vadksa okys nks iz'uksa esa vkarfjd fodYi fn, x, gSaA
(iv) jpuk okys iz'u esa vkjs[ku LoPN gks vkSj fn, x, ekiu ds loZFkk vuq:i gksA
(v) dSydqysVj ds iz;ksx dh vuqefr ugha gSA ysfdu ;fn vko';drk gks rks vki xf.krh;
lkjf.k;ksa dh ek¡x dj ldrs gSaA
SECTION   A
[k.M v [k.M v [k.M v [k.M v [k.M v
Questions number 1 to 7 carry 2 marks each.
iz'u la[;k 1 ls 7 rd izR;sd iz'u ds 2 vad gSaA
1. Find the LCM of    and  .
 rFkk  dk y?kqre lekioR;Z Kkr dhft,A
2. Solve for x and y :
8x —9y = 6xy
10x + 6y = 19xy
             OR
Solve for x and y :
x rFkk y ds fy, gy dhft, %
8x —9y = 6xy
10x + 6y = 19xy
      vFkok      vFkok      vFkok      vFkok      vFkok
x rFkk y ds fy, gy dhft, %
3. In an A.P ., the sum of its first n terms is   n
2
 + 2n.   Find its 18
th
  term.
,d lekUrj Js<+h ds izFke n inksa dk ;ksxQy n
2
 + 2n gSA bldk 18ok¡ in Kkr dhft,A
3 P.T.O. 30/1
4. In Figure 1, two circles touch each other externally at C. Prove that the common tangent
at C bisects the other two common tangents.
OR
D is any point on the side BC of a  ABC such that  ADC =  BAC. Prove that
CA
2
 = BC.CD.
vkÑfr 1 esa] nks o`Ùk ijLij fcUnq C ij ckár% Li'kZ djrs gSaA fl) dhft, fd fcUnq C ls mHk;fu"B
Li'kZ js[kk vU; nks mHk;fu"B Li'kZ js[kkvksa dks lef}Hkkftr djrh gSA
vFkok vFkok vFkok vFkok vFkok
,d  ABC dh Hkqtk BC ij dksbZ fcUnq D bl izdkj fLFkr gS fd  ADC =  BAC. fl)
dhft, fd CA
2
 = BC.CD.
5. Find the mean of the following distribution :
Class Frequency
0-10 8
10-20 12
20-30 10
30-40 11
40-50 9
4 30/1
fuEu caVu dk ek/; Kkr dhft, %
oxZ ckjEckjrk
0-10 8
10-20 12
20-30 10
30-40 11
40-50 9
6. A ceiling fan is marked at Rs. 970 cash or for Rs. 210 as cash down payment followed
by three equal monthly instalments of Rs. 260. Find the rate of interest charged under
the instalment plan.
,d Nr ds ia[ks dk udn ewY; 970 #- gS vFkok og 210 #- ds udn Hkqxrku ds lkFk 260 #-
dh rhu leku ekfld fdLrksa ij miyC/k gSA fdLr ;kstuk ds vUrxZr C;kt dh nj Kkr
dhft,A
7. A box contains 5 red balls, 4 green balls and 7 white balls. A ball is drawn at random
from the box. Find the probability that the ball drawn is
(a) white.
(b) neither red nor white.
,d ckWDl esa 5 yky xsansa] 4 gjh xsansa rFkk 7 lQsn xsansa gSaA ckWDl esa ls ,d xsan ;kn`PN;k fudkyh
xbZA izkf;drk Kkr dhft, fd fudkyh xbZ xsan
¼v½ lQsn gSA
¼c½ u rks yky gS vkSj u gh lQsn gSA
5 P.T.O. 30/1
SECTION B
[k.M c [k.M c [k.M c [k.M c [k.M c
Questions number 8 to 19 carry 3 marks each.
iz'u la[;k 8 ls 19 rd izR;sd iz'u ds 3 vad gSaA
8. Solve the following system of linear equations graphically :
2x + 3y = 12
2y — 1 = x
fuEu jSf[kd lehdj.k fudk; dks xzkQ+ }kjk gy dhft, %
2x + 3y = 12
2y — 1 = x
9. Simplify :
ljy dhft, %
10. The first term, common difference and last term of  an  A.P. are 12, 6 and 252
respectively. Find the sum of all terms of this A.P.
,d lekUrj Js<+h dk izFke in] lkoZ vUrj rFkk vfUre in Øe'k% 12] 6 rFkk 252 gSaA bl lekUrj
Js<+h ds lHkh inksa dk ;ksxQy Kkr dhft,A
11. Prove that any four vertices of a regular pentagon are cyclic.
                                         OR
BC is a chord of a circle with centre O. A is a point on arc BAC as shown in Figure 2.
Prove that    BAG +  OBC = 90°.
Read More
Offer running on EduRev: Apply code STAYHOME200 to get INR 200 off on our premium plan EduRev Infinity!

Related Searches

Important questions

,

Math - Question paper

,

Extra Questions

,

video lectures

,

Semester Notes

,

Viva Questions

,

Class 10

,

Math - Question paper

,

CBSE

,

Math - Question paper

,

Class 10

,

study material

,

CBSE

,

Exam

,

Previous Year Questions with Solutions

,

Free

,

Sample Paper

,

NCERT Class 10 Notes | EduRev

,

mock tests for examination

,

Objective type Questions

,

ppt

,

MCQs

,

pdf

,

CBSE

,

shortcuts and tricks

,

practice quizzes

,

NCERT Class 10 Notes | EduRev

,

Summary

,

past year papers

,

Class 10

,

NCERT Class 10 Notes | EduRev

;