Moment of Inertia Class 11 Notes | EduRev

Physics Class 11

NEET : Moment of Inertia Class 11 Notes | EduRev

The document Moment of Inertia Class 11 Notes | EduRev is a part of the NEET Course Physics Class 11.
All you need of NEET at this link: NEET

Linear momentum is a product of the mass (m) of an object and the velocity (v) of the object. If an object has higher momentum, then it harder to stop it. The formula for linear momentum is p = mv. The total amount of momentum never changes, and this property is called conservation of momentum. Let us study more about Linear momentum and conservation of momentum.
Moment of Inertia Class 11 Notes | EduRev

Linear Momentum of System of Particles
We know that the linear momentum of the particle is
p = mv
Newton’s second law for a single particle is given by,
Moment of Inertia Class 11 Notes | EduRev
where F is the force of the particle. For ‘ n ‘ no. of particles total linear  momentum is,
P = p+ p+…..+pn 
each of momentum is written as  mv+ m2v+ ………..+mnvn. We know that velocity of the centre of mass is 
Moment of Inertia Class 11 Notes | EduRev
mv =  Σ  mivi 
So comparing these equations we get,
P = M V 
Therefore we can say that the total linear momentum of a system of particles is equal to the product of the total mass of the system and the velocity of its center of mass. Differentiating the above equation we get,
Moment of Inertia Class 11 Notes | EduRev
dv/dt is acceleration of centre of mass, MA is the force external. So, 
Moment of Inertia Class 11 Notes | EduRev
This above equation is nothing but Newton’s second law to a system of particles. If the total external force acting on the system is zero,
Moment of Inertia Class 11 Notes | EduRev
This means that P = constant. So whenever the total force acting on the system of a particle is equal to zero then the total linear momentum of the system is constant or conserved. This is nothing but the law of conservation of total linear momentum of a system of particles. 

Conservation of Total Linear Momentum of a System of Particles

Let us take the example of radioactive decay. What is radioactive decay? It is a process where an unstable nucleus splits up in relatively stable nuclei releasing a huge amount of energy.
Suppose there is a parent nucleus which is unstable and it wants to become stable, in order to attain stability it will emit α particle and another daughter nucleus.
This daughter nucleus is much more stable than the parent nucleus. This what radioactive decay is. Now suppose the parent nucleus is at rest and also the mass of the α is ‘ m ‘ and the daughter nucleus is M.
So the mass of the parent nucleus will be m + M. Here everything that is happening is not due to the external force but all that happens is due to the internal force. So here Fext = 0, we can say that 
Moment of Inertia Class 11 Notes | EduRev

Offer running on EduRev: Apply code STAYHOME200 to get INR 200 off on our premium plan EduRev Infinity!

Related Searches

study material

,

Exam

,

mock tests for examination

,

Summary

,

Moment of Inertia Class 11 Notes | EduRev

,

Viva Questions

,

Free

,

Semester Notes

,

Moment of Inertia Class 11 Notes | EduRev

,

pdf

,

shortcuts and tricks

,

Objective type Questions

,

Previous Year Questions with Solutions

,

past year papers

,

video lectures

,

MCQs

,

ppt

,

practice quizzes

,

Extra Questions

,

Moment of Inertia Class 11 Notes | EduRev

,

Important questions

,

Sample Paper

;