Commerce Exam  >  Commerce Notes  >  Mathematics (Maths) Class 11  >  NCERT Exemplar: Principle of Mathematical Induction

NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce PDF Download

Q.1. Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer.
Ans.
The required statement is P(n) = 2n < n!
Justification: P(n) : 2n < n!
P(1) : 2.1 < 1!
⇒ 2 < 1 not true
P(2) : 2.2 < 2!
⇒ 4 < 2.1
⇒ 4 < 2 not true
P(3) : 2.3 < 3!
⇒ 6 < 3.2.1
⇒ 6 < 6 not true
P(4) : 2.4 < 4!
⇒ 8 < 4.3.2.1
⇒ 8 < 24 True
P(5) : 2.5 < 5!
⇒ 10 < 5.4.3.2.1
⇒ 10 < 120 True
Hence, P(n) = 2n < n! is not true for P(1), P(2) and P(3) but it is true for all values of n ≥ 4.

Q.2. Give an example of a statement P(n) which is true for all n. Justify your answer.
Prove each of the statements in Exercises 3 - 16 by the Principle of Mathematical Induction :
Ans. 
The required statement is
P(n) : 1 + 2 + 3 + ... + n =NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
Justification: P(1) :   NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce 
P(k) : 1 + 2 + 3 + ... + k =NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce Let it be true.
P(k + 1) : 1 + 2 + 3 + ... + k + (k + 1)
NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
Hence, P(k + 1) is true whenever P(k) is true.
Therefore by the principle of mathematical induction we have p(n) is true for all n.

Q.3.  4n – 1 is divisible by 3, for each natural number n.
Ans. 
Let P(n) : 4n – 1
Step 1: P(1) = 4 – 1 = 3 which is divisible by 3, so it is true.
Step 2: P(2) = 4k – 1 = 3λ . Let it be true.
Step 3: P(k + 1)  =  4k + 1 – 1
= 4k .4 – 1 = 4.4k   4 + 3 = 4(4k  1) + 3
= 4 (3λ)  +  3 (from Step 2)
= 3[4λ + 1] which is true as it is divisible by 3.
Hence, P(k + 1) is true whenever P(k) is true.

Q.4. 23n – 1 is divisible by 7, for all natural numbers n.
Ans. 
Let P(n) : 23n – 1
Step 1: P(1) = 23.1 1 = 8  1 = 7 which is divisible by 7.
So, P(1) is true.
Step 2: P(k) = 23k – 1 = 7l. Let it be true.
Step 3: P(k + 1) =  23(k + 1) – 1
= 23k + 3 – 1 = 23.23k   8 + 7 = 8.23k  8 + 7
= 8(23k  1) + 7  (from Step 2)
= 8.7λ + 7
= 7(8λ + 1) which is true as it is divisible by 7
Hence, P(k + 1) is true whenever P(k) is true.

Q.5. n3 – 7n + 3 is divisible by 3, for all natural numbers n.
Ans. 
Let P(n) : n3  7n + 3
Step 1: P(1) : (1)3  7(1) + 3
= 1  7 + 3 = - 3  which is divisible by 3.
So, P(1) is true    .
Step 2: Assume P(k) is true for some  K∈N P(k) : k3  7k + 3 = 3λ, λ∈N.
 k3 =  + 7k  3..............(i)
Step 3: Now we have to prove P(k + 1) : (k + 1)3  7(k + 1) + 3 is divisible by 3.
Now P(k + 1) : (k + 1)3  7(k + 1) + 3= k3 + 1 + 3k2 + 3k  7k  7 + 3
= k3 + 3k2  4k  3
= (3λ + 7k  3) + 3k2  4k – 3 (using equation (i))
= 3k2 + 3k + 3λ  6
= 3(k2 + k + λ  2) is divisible by 3.
⇒ P(k + 1) is true.
Hence, P(k + 1) is true whenever P(k) is true.
Therefore by the principle of mathematical induction we have p(n) is true for all n.

Q.6. 32n – 1 is divisible by 8, for all natural numbers n.
Ans. 
Let P(n) : 32n  1
Step 1: P(1) : 32  1 = 9  1 = 8 which is divisible by 8.
So, P(1) is true.
Step 2: Assume P(k) is true for some P(k) : 32k  1 = 8λ, λ∈N.     Step 3: Now we have to prove P(k + 1) : 32(k + 1)  1  is divisible by 8.
P(k + 1) : 32(k + 1)  1
= 32k + 2 1 = 32.32k   9 + 8 = 9(32k   1) + 8
= 9.8λ + 8 (from Step 2)
= 8[9λ + 1] is divisible by 8.
⇒ P(k + 1) is true.
Hence, P(k + 1) is true whenever P(k) is true.
Therefore by the principle of mathematical induction we have p(n) is true for all n.

Q.7. For any natural number n, 7n – 2n is divisible by 5.
Ans. 
Let P(n) : 7n – 2n
Step 1: P(1) : 71 – 21 = 5 which is divisible by 5.
So it is true for P(1).
Step 2: P(k) : 7k – 2k = 5λ. Let it be true for P(k).
Step 3: P(k +1) = 7k + 1 – 2k + 1
= 7k + 1 + 7k.2 – 7k.2 – 2k + 1
= (7k + 1 – 7k.2) + 7k.2 – 2k + 1)
= 7k(7 – 2) + 2.(7k – 2k)
= 5.7k + 2.5λ (from Step 2)
= 5(7k + 2λ) which is divisible by 5.
So, it is true for P(k + 1).
Hence, P(k + 1) is true whenever P(k) is true.

Q.8. For any natural number n, xn – yn is divisible by x – y, where x and y are any integers with x ≠ y.
Ans. 
Let P(n) : xn – yn
Step 1: P(1) : x1 – y1 = x – y which is divisible by x – y.
So P(1) is true.
Step 2: P(k) : xk – yk = (x – y)λ. Let it be true.
Step 3: P(k + 1) = xk + 1 – yk + 1 = xk + 1 – xky – xky – yk + 1
= (xk + 1 – xky) + (xky – yk + 1)
= xk(x – y) + y(xk – yk)
= xk (x – y) + y.(x – y)λ (from Step 2)
= (x – y) (xk + yλ)which is divisible by (x – y).
So, it is true for P(k + 1).

Q.9. n3 – n is divisible by 6, for each natural number n ≥ 2.
Ans. 
Let P(n) : n3 – n
Step 1: P(2) : 23 – 2 = 6 which is divisible by 6. So it is true for P(2).
Step 2: P(k) : k3 – k = 6λ. Let it be true for k ≥ 2
⇒ k3 = 6λ + k ...(i)
Step 3: P(k + 1)
= (k + 1)3 – (k + 1)
= k3 + 1 + 3k2 + 3k – k – 1
= k3 – k + 3(k2 + k)
= 6λ + 3(k2 + k) [from (i)]
We know that 3(k2 + k) is divisible by 6 for every value of k ∈ N.
Hence P(k + 1) is true whenever P(k) is true.

Q.10. n (n+ 5) is divisible by 6, for each natural number n.
Ans. 
Let P(n) : n(n2 + 5)
Step 1: P(1) : 1(1 + 5) = 6 which is divisible by 6. So it is true for P(1).
Step 2: P(k) : k(k2 + 5) = 6λ. Let it be true
⇒ k3 + 5k = 
⇒ k3 = 6λ – 5k ...(i)
Step 3: P(k + 1) = (k + 1)[(k + 1)2 + 5]
= (k + 1)[k2 + 1 + 2k + 5]
= (k + 1)[k2 + 2k + 6]
= k3 + 2k2 + 6k + k2 + 2k + 6
= k3 + 3k2 + 8k + 6
= k3 + 5k + 3k2 + 3k + 6
= 6λ – 5k + 5k + 3(k2 + k + 2)  [From (i)]
=  + 3(k2 + k + 2)
We know that k2 + k + 2 is divisible by 2 for each value of k ∈ N,
so, let k2 + k + 2 = 2m.
So P(k + 1)  =   +  3.2m = 6(λ + m) which is divisible by 6.
Hence, P(k + 1) is  true whenever P(k) is true.

Q.11. n2 < 2n for all natural numbers n ≥ 5.
Ans.
Let P(n) : n2 < 2n for all natural number, n  5.
Step 1: P(5) : 52 < 25  25 < 32 which is true. So P(5) is true.
Step 2: Assume P(k) is true for some k∈N, k  5 ⇒ P(k) : k2 < 2k.............(i) is true.
Step 3: Now we have to prove P(k + 1) : (k + 1)2 < 2k + 1 is true where k  5.
Now we have (k + 1)2  = k2 + 2k + 1 < 2k + 2k + 1 .............(ii) [using equation(i)]
Now let 2k + 2k + 1 < 2k + 1
⇒ 2k + 2k + 1 < 2k . 2 =  2k + 2k
⇒ (2k + 1) < 2k  which is true for K∈N , k  5 ….........(iii)
So (k + 1)2 < 2k + 2k   [using (ii) and (iii)]
⇒ (k + 1)2 < 2.2k
⇒(k + 1)2 < 2k + 1.
⇒ P(k + 1) is true.
Hence, P(k + 1) is true whenever P(k) is  true.
Therefore by the principle of mathematical induction we have p(n) is true for all n  5.

Q.12. 2n < (n + 2)! for all natural number n
Ans.
Let p(n) : 2n < (n + 2)! for all natural number n.
Step 1: P(1): 2.1 < (1 + 2)!
⇒ 2 < 3! ⇒ 2 < 6 which is true  (∴ 3! = 3 × 2 × 1 = 6)
So P(1) is true.
Step 2: Assume P(k) is true for some K∈N ⇒ P(k): 2k < (k + 2)! is true..
Step 3: Now we have to prove P(k + 1) : 2(k + 1) <  (k + 1 + 2)! is true.
Since 2k < (k + 2)! (from Step 2)
⇒ 2k + 2 < (k + 2)! + 2
 2(k + 1) < (k + 2)! + 2............(i)
Now let  (k + 2)! + 2 < (k + 3)!............(ii)
⇒ 2 < (k + 3)! - (k + 2)!
⇒2 <  (k + 2)! [k + 3-1]
2 < (k + 2)!.(k + 2) which is true for any natural number k.
 2(k + 1) < (k + 3)!   [using (i) and (ii)]
⇒ 2(k + 1) < (k + 2 + 1)!
⇒ P(k + 1) is true.
Hence, P(k + 1) is true whenever P(k) is true.     Therefore by the principle of mathematical induction we have p(n) is true for all n.

Q.13. NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commercefor all natural numbers n ≥ 2.
Ans. 
Let P(n)    NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
Step 1: P(2) :NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commercewhich is true.
Step 2: P(k)    NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce Let it be true.
Step 3: P(k + 1) :NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - CommerceNCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
From Step 2, we have
NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
Now ifNCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce...(ii)
From eqn. (i) and (ii) we get
NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
Hence, P(k +1) is true whenever P(k) is true.

Q.14. 2 + 4 + 6 + ... + 2n = n2 + n for all natural numbers n.
Ans. 
 Let P(n) :  2 + 4 + 6 + ... + 2n = n2 + n, ∀n ∈ N
Step 1: P(1) : 2 = 12 + 1 = 2
which is true for P(1)
Step 2: P(k) : 2 + 4 + 6 + ...+ 2k = k2 + k. Let it be true.
Step 3: P(k + 1) : 2 +  4 + 6 +...+ 2k + 2k + 2
= k2 + k + 2k + 2
= k2 + 3k + 2
= k2 + 2k + k + 1 + 1
= (k + 1)2 + (k + 1)
Which is true for P(k + 1)
So, P(k + 1) is true whenever P(k) is true.

Q.15. 1 + 2 + 22 + ... + 2n = 2n+1 – 1 for all natural numbers n.
Ans.
Let P(n) : 1 + 2 +  22 +  + 2n = 2n + 1  1, n∈N.
P(n) : 20 + 21 + 22 +  + 2n = 2n+1  1
Step 1: P(1) L.H.S = 20 +21 = 1 + 2 = 3. 
R.H.S = 21 + 1  1 = 22  1 = 4 – 1 = 3 .
L.H.S = R.H.S. So P(1) is true.
Step 2: Assume P(k) is true for some k∈N 
⇒ P(k) : 20 + 21 + 22 +  + 2k = 2k + 1  1..........(i)
Step 3: Now we have to prove P(k + 1) : 20 + 21 + 22 +…+ 2k + 2k + 1 = 2(k + 1) + 1 1.
Adding 2k + 1 on both sides of equation (i)
20 + 21 + 22 +  + 2k + 2k + 1
= 2k + 1  1 + 2k + 1 = 2.2k + 1  1
= 2k + 2  1
= 2(k + 1) + 1  1
⇒ P(k + 1) is true.

Q.16. 1 + 5 + 9 + ... + (4n – 3) = n (2n – 1) for all natural numbers n.
Ans. 
Let P(n) : 1 +  5  +  9 +  + (4n  3) = n(2n  1),  n ∈ N
Step 1: P(1) : 1 = 1(2.1  1) = 1 which is true for P(1)
Step 2: P(k) : 1 + 5 + 9 +...+ (4k – 3) = k(2k – 1). Let it be true.
Step 3: P(k + 1) : 1 + 5 + 9 +...+ (4k  3) + (4k + 1)
= k(2k  1) + (4k + 1) = 2k2 – k + 4k + 1
= 2k2 + 3k + 1 = 2k2 + 2k + k + 1
= 2k(k + 1) + 1(k + 1) = (2k + 1)(k + 1)
= (k + 1)(2k + 2  1) = (k + 1) [2(k + 1)  1]
Which is true for P(k + 1).
Hence, P(k + 1) is true whenever P(k) is true.

Long Answer Type
Q.17. A sequence a1, a2, a3 ... is defined by letting a1 = 3 and ak = 7ak–1 for all natural numbers k ≥ 2. Show that an = 3.7n–1 for all natural numbers.
Ans. 
Given that:
a1 = 3
a2 = 7a2 – 1 = 7.a1 = 7.3 = 21
a3 = 7.a3 – 1 = 7.a2 = 7.21 = 147...
Let P(n) : an = 3.7n  1, ∀n∈N
Step 1: P(2): a2 = 3.72  1 = 21  21. So P(2) is true.
Step 2: P(k): ak = 3.7k – 1. Let it be true.
Step 3: ak = 7ak – 1 (given)
Put k = k + 1
ak + 1 = 7ak = 7(3.7k – 1) = 3.7k + 1  1 = 3.7(k + 1)  1
which is true for P(k + 1)
Hence, P(k + 1) is true whenever P(k) is true.

Q.18. A sequence b0, b1, b2 ... is defined by letting b0 = 5 and bk = 4 + bk – 1 for all natural numbers k. Show that bn = 5 + 4n for all natural number n using mathematical induction.
Ans. 
We have b0 = 5 and bk = 4 + bk – 1
⇒b0 = 5, b1 = 4 + b0 = 4 + 5 = 9 and b2 = 4 + b1 = 4 + 9 = 13
Let P(n) : bn = 5 + 4n
Step 1: P(1) :  b1 = 5 + 4 = 9 ⇒ 9 = 9 which is true.
Step 2: Assume P(k) is true for some k∈N ⇒ P(k): bk = 5 + 4k is true..  
Step 3: Given that:
 P(k) = 4 + bk – 1
⇒ P(k + 1) = 4 + bk + 1 – 1
⇒ P(k + 1) = 4 + bk = 4 + 5 + 4k
⇒ P(k + 1) = 5 + 4(k + 1) which is true for P(k + 1)
Hence, P(k + 1) is true whenever P(k) is true.

Q.19. A sequence d1, d2, d3 ... is defined by letting d1 = 2 and dk =NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
for all natural numbers, k ≥ 2. Show that dn =NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commercefor all n ∈ N.
Ans. 
Given that: d1 = 2 and dk =NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
Let P(n) :NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
Step 1: P(1) :NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commercewhich is true for P(1).
Step 2: P(k) :NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - CommerceLet it be true for P(k).
Step 3: Given that: dk =NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
 NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - CommerceWhich is true for P(k + 1)
Hence, P(k + 1) is true whenever P(k) is true.

Q.20. Prove that for all  n ∈ N
cos α + cos (α + β) + cos (α + 2β) + ... + cos (α + (n – 1) β)
NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
Ans.
Let P(n) : cos a + cos (a + b) + cos (a + 2b) + ... + cos [a + (n – 1)b]
NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
Step 1: P(1) :cos α =NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
which is true for P(1)
Step 2: P(k) : cos α + cos (α +β) + cos (α + 2β) + ... + cos [α + (k – 1)β]
NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - CommerceLet it be true.
Step 3: P(k + 1) : cos α + cos (α + b) + cos (α + 2b) + ... + cos [α + (k – 1)b]
+ cos [ α + (k + 1 – 1)b]
NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
(from Step 2)
NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
[∴ 2 cos A sin B = sin (A + B) – sin (A – B)]
NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commercewhich is true for P(k + 1)
Hence, P(k + 1) is true whenever P(k) is true.

Q.21. Prove that, cos θ cos 2θ cos22θ ... cos2n–1θNCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commercefor all n ∈ N.
Ans. 
Let P(n) : cos θ.cos 2θ.cos 22θ…cos 2n – 1θNCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce    ,∀n ∈ N.
Step 1: P(1) :NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
⇒ cos θ = cos θ which is true for P(1)
Step 2: P(k) : cos θ.cos 2θ.cos 22θ ... cos 2k – 1 θ =NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
Let it be true for P(k).
Step 3: P(k + 1) : cos θ.cos 2θ.cos 22θ ... cos 2k – 1θ. cos 2(k + 1)  1θ
NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce    [∵ 2 sin θ cos θ = sin 2θ]
NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commercewhich is true for P(k + 1).
Hence, P(k + 1) is true whenever P(k) is true.

Q.22. Prove that, sin θ + sin 2θ + sin 3θ + ... + sin nθNCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce 
 for all n ∈ N.
Ans.
Let p(n) : sin θ + sin  + sin  +  + sin    
NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce 
Step 1: P(1) : sin θ =NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
∴ sin θ = sin θ which is true for P(1).
Step 2: P(k) : sin θ + sin 2θ + sin 3θ + ... + sin kθ
NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce. Let it be true for P(k).
Step 3: P(k + 1) : sin θ + sin 2θ + sin 3θ + ... + sin (k + 1)θ
NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commercewhich is true for P(k + 1).
Hence, P(k + 1) is true whenever P(k) is true.

Q.23. Show thatNCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerceis a natural number for all n ∈ N.
Ans.
Let P(n)  : NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
Step 1: P(1)  :  NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce  
Which is true for P(1).
Step 2: P(k) NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce. Let it be true for P(k) and let
NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
Step 3: P(k + 1) =NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
= λ + k4 + 2k3 + 3k2 + 2k + 1     [from Step 2]
= positive integers = natural number
Which is true for P(k + 1).
Hence, P(k + 1) is true whenever P(k) is true.

Q.24. Prove thatNCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce, for all natural numbers  n > 1.
Ans.
 Let P(n) :   NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce 
Step 1: P(2) : NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commercewhich is true for P(2).
Step 2: P(k) :NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce.Let it be true for P(k).
Step 3: P(k + 1) :NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
Since  NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
Which is true for P(k + 1).
Hence, P(k + 1) is true whenever P(k) is true.

Q.25. Prove that number of subsets of a set containing n distinct elements is
 2n, for all n ∈ N.
Ans. 
Let P(n) : Number of subsets of a set containing n distinct
elements is 2n, ∀ n ∈ N
Step 1: It is clear that P(1) is true for n = 1. Number of subsets 
= 21 = 2. Which is true.
Step 2: P(k) is assumed to be true for n = k. Since the number of subsets = 2k.
Step 3: P(k + 1) =  2k + 1
We know that if one number (i.e., element) is added to the elements of a given set, 
the number of subsets become double.
∴ Number of subsets of set having (k + 1) distinct elements
= 2 x 2k = 2k +  1 which is true for P(k + 1).
Hence P(k + 1) is true
whenever P(k) is true.

Objective Type Questions
Q.26. If 10n + 3.4n+2 + k is divisible by 9 for all n ∈ N,
then the least positive integral value of k is
(A) 5
(B) 3
(C) 7
(D) 1
Ans. 
Let P(n) = 10n + 3.4n + 2 + k is divisible by 9, ∀ n ∈ N
P(1) = 101 +  3.41 + 2 + k = 10 + 3.64 + k
= 10 + 192 + k = 202 + k must be divisible by 9.
If (202 + k) is divisible by 9 then k must be equal to 5
202 + 5 = 207 which is divisible by 9
NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce
So, the least positive integral value of k = 5.
Hence, the correct option is (a).

Q.27. For all n ∈ N, 3.52n+1 + 23n+1 is divisible by
(A) 19
(B) 17
(C) 23
(D) 25
Ans.
Let P(n) : 3.52n + 1 + 23n + 1
For P(1) : 3.52.1 + 1 + 23.1 + = 3.53 + 24 = 3(125) + 16 = 375 + 16
= 391 = 23 x 17
So it is divisible by 17 and 23 both.
Hence, the correct option is (b) and (c).

Q.28. If xn – 1 is divisible by x – k, then the least positive integral value of k is (A) 1
(B) 2
(C) 3
(D) 4
Ans. 
Let P(n) = xn – 1 is divisible by x – k.
P(1) = x – 1 is divisible by x – k.
Since k = 1 is the possible least integral value of k.
Hence, the correct option is (a).

Fill in the Blanks
Q.29. If P(n) : 2n < n!, n ∈ N, then P(n) is true for all n ≥ ________.
Ans.
Given that P(n) : 2n < n!,  n ∈ N
For n = 1 , 2 < 1 (Not true)
For n = 2 , 2 × 2 < 2!  4 < 2  (Not true) For n  = 3 , 2 × 3 < 3!  6 < 3.2.1  6 < 6 (Not true) For  n = 4 , 2 × 4 < 4!  8 < 4.3.2.1  8 < 24 (true)
For n = 5 , 2 × 5 < 5!  10 < 5.4.3.2.1 ⇒10 < 120(true)
So, P(n) is true for n  4.
Hence, the value of the filler  is 4.

State whether the following statement is true or false. Justify.
Q.30. Let P(n) be a statement and let P(k) ⇒ P(k + 1), for some natural number k, then P(n) is true for all n ∈ N.
Ans.
Given that: P(k) ⇒ P(k + 1)
P(1)⇒ P(2) which is not true.
Hence, the statement is ‘False’.

The document NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce is a part of the Commerce Course Mathematics (Maths) Class 11.
All you need of Commerce at this link: Commerce
75 videos|238 docs|91 tests

Top Courses for Commerce

FAQs on NCERT Exemplar: Principle of Mathematical Induction - Mathematics (Maths) Class 11 - Commerce

1. What is the principle of mathematical induction?
Ans. The principle of mathematical induction is a method used to prove statements involving natural numbers. It consists of two steps: the base step, where the statement is proven for a specific value of the natural number, and the induction step, where it is proven that if the statement holds for one natural number, it also holds for the next natural number.
2. How is the principle of mathematical induction applied in solving mathematical problems?
Ans. The principle of mathematical induction is applied by first proving the statement for the base case, usually the smallest value of the natural number. Then, assuming that the statement holds for a certain natural number, it is proven that it also holds for the next natural number. By repeating this process, the statement is proven to be true for all natural numbers.
3. What are some common mistakes to avoid when using the principle of mathematical induction?
Ans. Some common mistakes to avoid when using the principle of mathematical induction include: - Forgetting to prove the base case: It is essential to prove the statement for the smallest value of the natural number. - Assuming the statement is true for all natural numbers without proving the induction step: Each step must be proven individually. - Skipping intermediate steps: It is necessary to show the transition from one natural number to the next in the induction step.
4. Can the principle of mathematical induction be used to prove statements involving real numbers?
Ans. No, the principle of mathematical induction is specifically designed for proving statements involving natural numbers. It relies on the concept of a successor, which is not applicable to real numbers. Different methods, such as proof by contradiction or direct proof, are used to prove statements involving real numbers.
5. Are there any limitations to the principle of mathematical induction?
Ans. Yes, there are limitations to the principle of mathematical induction. It can only be used to prove statements that hold for all natural numbers. It cannot be used to prove statements that hold for a subset of natural numbers or for infinite sets. Additionally, it cannot be used to prove statements involving real numbers or other mathematical objects beyond the scope of natural numbers.
75 videos|238 docs|91 tests
Download as PDF
Explore Courses for Commerce exam

Top Courses for Commerce

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Sample Paper

,

Important questions

,

NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce

,

video lectures

,

past year papers

,

study material

,

Semester Notes

,

Objective type Questions

,

Exam

,

shortcuts and tricks

,

NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce

,

Previous Year Questions with Solutions

,

MCQs

,

Viva Questions

,

mock tests for examination

,

NCERT Exemplar: Principle of Mathematical Induction | Mathematics (Maths) Class 11 - Commerce

,

practice quizzes

,

Extra Questions

,

Summary

,

pdf

,

Free

,

ppt

;