Class 9 Exam  >  Class 9 Notes  >  NCERT Solutions Chapter 2 - Polynomials (II), Class 9, Maths

NCERT Solutions Chapter 2 - Polynomials (II), Class 9, Maths PDF Download

Exercise 2.4

 1. Determine which of the following polynomials has (x + 1) a factor:
 (i) x3x2x + 1

(ii) x4x3x2x + 1
 (iii) x4 + 3x3 + 3x2x + 1 

(iv) x3x2 - (2 + √2)x + √2



Answer

(i) If (x + 1) is a factor of p(x) = x3x2x + 1, p(-1) must be zero. 
Here, p(x) = x3x2x + 1 
p(-1) = (-1)3 + (-1)2 + (-1) + 1 
= -1 + 1 - 1 + 1 = 0
Therefore, x + 1 is a factor of this polynomial
 

(ii) If (x + 1) is a factor of p(x) = x4x3x2x + 1, p(-1) must be zero. 
Here, p(x) = x4x3x2x + 1 
p(-1) = (-1)4 + (-1)3 + (-1)2 + (-1) + 1
= 1 - 1 + 1 - 1 + 1 = 1

As, p(-1) ≠ 0
Therefore, x + 1 is not a factor of this polynomial

(iii)If (x + 1) is a factor of polynomial p(x) = x4 + 3x3 + 3x2x + 1, p(- 1) must be 0. 
p(-1) = (-1)4 + 3(-1)3 + 3(-1)2 + (-1) + 1
= 1 - 3 + 3 - 1 + 1 = 1
As, p(-1) ≠ 0
Therefore, x + 1 is not a factor of this polynomial.

 

(iv) If (x + 1) is a factor of polynomial

p(x) = x3x2 - (2 + √2)x + √2, p(- 1) must be 0.

p(-1) =  (-1)3 -  (-1)2 -  (2 + √2) (-1) + √2
= -1 - 1 + 2 + √2 + √2
=2√2
As, p(-1) ≠ 0
Therefore,, x + 1 is not a factor of this polynomial.



2. Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the following cases:
 (i) p(x) = 2x3x2 - 2x - 1, g(x) = x + 1
 (ii) p(x) = x3 + 3x2 + 3x + 1, g(x) = x + 2
 (iii) p(x) = x3 - 4 x2x + 6, g(x) = x - 3


Answer

(i) If g(x) = x + 1 is a factor of given polynomial p(x), p(- 1) must be zero.
p(x) = 2x3x2 - 2x - 1
p(- 1) = 2(-1)3 + (-1)2 - 2(-1) - 1
= 2(- 1) + 1 + 2 - 1 = 0
Hence, g(x) = x + 1 is a factor of given polynomial.

(ii) If g(x) = x + 2 is a factor of given polynomial p(x), p(- 2) must be 0.
p(x) = x3 +3x2 + 3x + 1
p(-2) = (-2)3 + 3(- 2)2 + 3(- 2) + 1
= -8 + 12 - 6 + 1
= -1

As, p(-2) ≠ 0

Hence g(x) = x + 2 is not a factor of given polynomial.


(iii) If g(x) = x - 3 is a factor of given polynomial p(x), p(3) must be 0.
p(x) = x3 - 4x2x + 6
p(3) = (3)3 - 4(3)2 + 3 + 6
= 27 - 36 + 9 = 0
Therefore,, g(x) = x - 3 is a factor of given polynomial.
 

3. Find the value of k, if x - 1 is a factor of p(x) in each of the following cases:(i) p(x) = x2xk
 (ii) p(x) = 2x2kx +  √2
 (iii) p(x) = kx2 - √2x + 1
 (iv) p(x) = kx2 - 3xk


Answer

(i) If x - 1 is a factor of polynomial p(x) = x2xk, then

p(1) = 0
⇒ (1)2 + 1 + k = 0
⇒ 2 + k = 0
⇒ k = - 2

Therefore, value of k is -2.


(ii) If x - 1 is a factor of polynomial p(x) = 2x2kx +  √2, then
p(1) = 0
⇒ 2(1)2k(1) + √2 = 0
⇒ 2 + k + √2 = 0
⇒ k = -2 - √2 = -(2 + √2)

Therefore, value of k is -(2 + √2).


(iii) If x - 1 is a factor of polynomial p(x) = kx2 - √2x + 1, then
p(1) = 0
⇒ k(1)2 - √2(1) + 1 = 0
⇒ k - √2 + 1 = 0
⇒ k = √2 - 1

Therefore, value of k is √2 - 1.


(iv) If x - 1 is a factor of polynomial p(x) = kx2 - 3xk, then
p(1) = 0
⇒ k(1)2 + 3(1) + k = 0
⇒ k - 3 + k = 0
⇒ 2k - 3 = 0
⇒ k = 3/2

Therefore, value of k is 3/2.

 

4. Factorise:
 (i) 12x2 + 7x + 1
 (ii) 2x2 + 7x + 3
 (iii) 6x2 + 5x - 6
 (iv) 3x2x - 4 


Answer

(i) 12x2 + 7x + 1
= 12x2 - 4x - 3x+ 1                   
= 4x (3x - 1) - 1 (3x - 1)
= (3x - 1) (4x - 1)

(ii) 2x2 + 7x + 3
= 2x2 + 6x+ 3
= 2x (x + 3) + 1 (x + 3)
=  (x + 3) (2+ 1) 

(iii) 6x2 + 5x - 6
= 6x2 + 9- 4x - 6

 = 3x (2x + 3) - 2 (2x + 3)
= (2x + 3) (3x - 2)


(iv) 3x2x - 4
= 3x2 - 4+ 3x - 4 
x (3x - 4) + 1 (3x - 4)
= (3x - 4) (x + 1)
 

5. Factorise:
 (i) x3 - 2x2x + 2

(ii) x3 - 3x2 - 9x - 5
 (iii) x3 + 13x2 + 32x + 20 

(iv) 2y3y2 - 2y - 1

Answer

(i) Let p(x) = x3 - 2x2x + 2
Factors of 2 are ±1 and ± 2
By trial method, we find that
p(1) = 0
So, (x+1) is factor of p(x)
Now,
p(x) = x3 - 2x2x + 2
p(-1) = (-1)3 - 2(-1)2 - (-1) + 2 = -1 -2 + 1 + 2 = 0
Therefore, (x+1) is the factor of  p(x)

p(x) = x3 - 2x2x  2
p(-1) = (-1)3 - 2(-1)2 - (-1) 2 = -1 -2 1 2 = 0
Therefore, (x 1) is the factor of  p(x)

Class IX, Mathematics, NCERT, CBSE, Questions and Answer, Q and A, Important

Now, Dividend = Divisor × Quotient + Remainder

(x+1) (x2 - 3x + 2)

= (x+1) (x2 - x - 2x + 2)

= (x+1) {x(x-1) -2(x-1)}

= (x+1) (x-1) (x+2)


(ii) Let p(x) = x3 - 3x2 - 9x - 5
Factors of 5 are ±1 and ±5
By trial method, we find that
p(5) = 0
So, (x-5) is factor of p(x)
Now,
p(x) = x3 - 2x2x + 2
p(5) = (5)3 - 3(5)2 - 9(5) - 5 = 125 - 75 - 45 - 5 = 0
Therefore, (x-5) is the factor of  p(x)

Class IX, Mathematics, NCERT, CBSE, Questions and Answer, Q and A, Important

Now, Dividend = Divisor × Quotient + Remainder

(x-5) (x2 + 2x + 1)

= (x-5) (x2 + x + x + 1)

(x-5) {x(x+1) +1(x+1)}

(x-5) (x+1) (x+1)

(iii) Let p(x) = x3 + 13x2 + 32x + 20
Factors of 20 are ±1, ±2, ±4, ±5, ±10 and ±20
By trial method, we find that
p(-1) = 0
So, (x+1) is factor of p(x)
Now,
p(x) =  x3 + 13x2 + 32x + 20
p(-1) = (-1)3 + 13(-1)2 + 32(-1) + 20 = -1 + 13 - 32 + 20 = 0
Therefore, (x+1) is the factor of  p(x)

Class IX, Mathematics, NCERT, CBSE, Questions and Answer, Q and A, Important

Now, Dividend = Divisor × Quotient + Remainder

(x+1) (x2 + 12x + 20)

= (x+1) (x2 + 2x + 10x + 20)

(x-5) {x(x+2) +10(x+2)}

(x-5) (x+2) (x+10)

(iv) Let p(y) = 2y3y2 - 2y - 1
Factors of ab = 2× (-1) = -2 are ±1 and ±2
By trial method, we find that
p(1) = 0
So, (y-1) is factor of p(y)
Now,
p(y) =  2y3y2 - 2y - 1
p(1) = 2(1)3 + (1)2 - 2(1) - 1 = 2 +1 - 2 - 1 = 0
Therefore, (y-1) is the factor of  p(y)

Class IX, Mathematics, NCERT, CBSE, Questions and Answer, Q and A, Important

 Now, Dividend = Divisor × Quotient + Remainder

(y-1) (2y2 + 3y + 1)

(y-1) (2y2 + 2y + y + 1)

(y-1) {2y(y+1) +1(y+1)}

(y-1) (2y+1) (y+1)

The document NCERT Solutions Chapter 2 - Polynomials (II), Class 9, Maths is a part of Class 9 category.
All you need of Class 9 at this link: Class 9

Top Courses for Class 9

FAQs on NCERT Solutions Chapter 2 - Polynomials (II), Class 9, Maths

1. What are Polynomials?
Ans. Polynomials are algebraic expressions that consist of variables and coefficients, involving only the operations of addition, subtraction, multiplication, and non-negative integer exponents of variables.
2. What is the degree of a polynomial?
Ans. The degree of a polynomial is the highest power of the variable in the polynomial. For example, the degree of the polynomial 3x^2 + 2x + 1 is 2.
3. How can we add and subtract polynomials?
Ans. To add or subtract polynomials, we combine the like terms. The like terms are the terms that have the same variable and the same power. For example, to add the polynomials 3x^2 + 2x + 1 and 2x^2 + 4x + 3, we first combine the like terms and get 5x^2 + 6x + 4.
4. What is the factor theorem?
Ans. The factor theorem states that if a polynomial f(x) is divided by the linear factor x - a, and the remainder is zero, then (x - a) is a factor of f(x). In other words, if f(a) = 0, then (x - a) is a factor of f(x).
5. How can we find the zeroes of a polynomial?
Ans. To find the zeroes of a polynomial, we need to solve the equation f(x) = 0, where f(x) is the polynomial. We can use various methods like factorization, synthetic division, or using the quadratic formula to solve the equation and find the zeroes of the polynomial.
Download as PDF
Explore Courses for Class 9 exam

Top Courses for Class 9

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Extra Questions

,

Maths

,

Semester Notes

,

Viva Questions

,

mock tests for examination

,

Previous Year Questions with Solutions

,

practice quizzes

,

NCERT Solutions Chapter 2 - Polynomials (II)

,

shortcuts and tricks

,

Sample Paper

,

NCERT Solutions Chapter 2 - Polynomials (II)

,

Class 9

,

Summary

,

pdf

,

Class 9

,

Class 9

,

Important questions

,

study material

,

ppt

,

Objective type Questions

,

Exam

,

past year papers

,

Free

,

video lectures

,

NCERT Solutions Chapter 2 - Polynomials (II)

,

Maths

,

Maths

,

MCQs

;