JEE Exam  >  JEE Notes  >  Mathematics (Maths) Class 12  >  NCERT Solutions Exercise- 7.9: Integrals

NCERT Solutions Class 12 Maths Chapter 7 - Integrals

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


1 	 / 	 1 5
N C E R T 	 s o l u t i o n
C h a p t e r 	 - 	 7
I n t e g r a l s 	 - 	 E x e r c i s e 	 7 9 .
E v a l u a t e 	 t h e 	 i n t e g r a l s 	 i n 	 E x e r c i s e s 	 1 	 t o 	 8 	 u s i n g 	 s u b s t i t u t i o n s .
1 . 	 	
A n s . 	 L e t 	 I 	 = 	
= 	 	 … … … . ( i )
P u t t i n g 	
	 	
	 	
T o 	 c h a n g e 	 t h e 	 l i m i t s 	 o f 	 i n t e g r a t i o n 	 f r o m 	 x 	 t o 	 t 	
w h e n 	 x 	 = 	 0 , 	 t 	 = 	 x
2
	 + 1 	 = 	 0 	 + 1 	 = 	 1
w h e n 	 x 	 = 1 , 	 t 	 = 	 x
2
	 + 1 	 = 	 1 	 + 1 	 = 	 2
	 	 F r o m 	 e q . 	 ( i ) , 	
	
= 	
Page 2


1 	 / 	 1 5
N C E R T 	 s o l u t i o n
C h a p t e r 	 - 	 7
I n t e g r a l s 	 - 	 E x e r c i s e 	 7 9 .
E v a l u a t e 	 t h e 	 i n t e g r a l s 	 i n 	 E x e r c i s e s 	 1 	 t o 	 8 	 u s i n g 	 s u b s t i t u t i o n s .
1 . 	 	
A n s . 	 L e t 	 I 	 = 	
= 	 	 … … … . ( i )
P u t t i n g 	
	 	
	 	
T o 	 c h a n g e 	 t h e 	 l i m i t s 	 o f 	 i n t e g r a t i o n 	 f r o m 	 x 	 t o 	 t 	
w h e n 	 x 	 = 	 0 , 	 t 	 = 	 x
2
	 + 1 	 = 	 0 	 + 1 	 = 	 1
w h e n 	 x 	 = 1 , 	 t 	 = 	 x
2
	 + 1 	 = 	 1 	 + 1 	 = 	 2
	 	 F r o m 	 e q . 	 ( i ) , 	
	
= 	
2 	 / 	 1 5
= 	
= 	 	
= 	
= 	 	 A n s . 	
2 . 	
A n s . 	 L e t 	 I 	 = 	 	 … … … . ( i )
P u t t i n g 	
	
	 	
T o 	 c h a n g e 	 t h e 	 l i m i t s 	 o f 	 i n t e g r a t i o n 	 f r o m 	 	 t o 	 	
W h e n 	 	
W h e n 	 	
	 	 F r o m 	 e q . 	 ( i ) ,
Page 3


1 	 / 	 1 5
N C E R T 	 s o l u t i o n
C h a p t e r 	 - 	 7
I n t e g r a l s 	 - 	 E x e r c i s e 	 7 9 .
E v a l u a t e 	 t h e 	 i n t e g r a l s 	 i n 	 E x e r c i s e s 	 1 	 t o 	 8 	 u s i n g 	 s u b s t i t u t i o n s .
1 . 	 	
A n s . 	 L e t 	 I 	 = 	
= 	 	 … … … . ( i )
P u t t i n g 	
	 	
	 	
T o 	 c h a n g e 	 t h e 	 l i m i t s 	 o f 	 i n t e g r a t i o n 	 f r o m 	 x 	 t o 	 t 	
w h e n 	 x 	 = 	 0 , 	 t 	 = 	 x
2
	 + 1 	 = 	 0 	 + 1 	 = 	 1
w h e n 	 x 	 = 1 , 	 t 	 = 	 x
2
	 + 1 	 = 	 1 	 + 1 	 = 	 2
	 	 F r o m 	 e q . 	 ( i ) , 	
	
= 	
2 	 / 	 1 5
= 	
= 	 	
= 	
= 	 	 A n s . 	
2 . 	
A n s . 	 L e t 	 I 	 = 	 	 … … … . ( i )
P u t t i n g 	
	
	 	
T o 	 c h a n g e 	 t h e 	 l i m i t s 	 o f 	 i n t e g r a t i o n 	 f r o m 	 	 t o 	 	
W h e n 	 	
W h e n 	 	
	 	 F r o m 	 e q . 	 ( i ) ,
3 	 / 	 1 5
I 	 = 	
= 	
= 	
= 	
= 	
= 	
= 	
= 	
= 	
= 	
Page 4


1 	 / 	 1 5
N C E R T 	 s o l u t i o n
C h a p t e r 	 - 	 7
I n t e g r a l s 	 - 	 E x e r c i s e 	 7 9 .
E v a l u a t e 	 t h e 	 i n t e g r a l s 	 i n 	 E x e r c i s e s 	 1 	 t o 	 8 	 u s i n g 	 s u b s t i t u t i o n s .
1 . 	 	
A n s . 	 L e t 	 I 	 = 	
= 	 	 … … … . ( i )
P u t t i n g 	
	 	
	 	
T o 	 c h a n g e 	 t h e 	 l i m i t s 	 o f 	 i n t e g r a t i o n 	 f r o m 	 x 	 t o 	 t 	
w h e n 	 x 	 = 	 0 , 	 t 	 = 	 x
2
	 + 1 	 = 	 0 	 + 1 	 = 	 1
w h e n 	 x 	 = 1 , 	 t 	 = 	 x
2
	 + 1 	 = 	 1 	 + 1 	 = 	 2
	 	 F r o m 	 e q . 	 ( i ) , 	
	
= 	
2 	 / 	 1 5
= 	
= 	 	
= 	
= 	 	 A n s . 	
2 . 	
A n s . 	 L e t 	 I 	 = 	 	 … … … . ( i )
P u t t i n g 	
	
	 	
T o 	 c h a n g e 	 t h e 	 l i m i t s 	 o f 	 i n t e g r a t i o n 	 f r o m 	 	 t o 	 	
W h e n 	 	
W h e n 	 	
	 	 F r o m 	 e q . 	 ( i ) ,
3 	 / 	 1 5
I 	 = 	
= 	
= 	
= 	
= 	
= 	
= 	
= 	
= 	
= 	
4 	 / 	 1 5
= 	
= 	 	 A n s . 	
3 . 	 	
A n s . 	 L e t 	 I 	 = 	 	 … … … . ( i )
P u t t i n g 	
	
	 	
L i m i t s 	 o f 	 i n t e g r a t i o n , 	 w h e n 	 	 	
w h e n 	
	
	 	 F r o m 	 e q . 	 ( i ) ,
I 	 = 	
= 	
Page 5


1 	 / 	 1 5
N C E R T 	 s o l u t i o n
C h a p t e r 	 - 	 7
I n t e g r a l s 	 - 	 E x e r c i s e 	 7 9 .
E v a l u a t e 	 t h e 	 i n t e g r a l s 	 i n 	 E x e r c i s e s 	 1 	 t o 	 8 	 u s i n g 	 s u b s t i t u t i o n s .
1 . 	 	
A n s . 	 L e t 	 I 	 = 	
= 	 	 … … … . ( i )
P u t t i n g 	
	 	
	 	
T o 	 c h a n g e 	 t h e 	 l i m i t s 	 o f 	 i n t e g r a t i o n 	 f r o m 	 x 	 t o 	 t 	
w h e n 	 x 	 = 	 0 , 	 t 	 = 	 x
2
	 + 1 	 = 	 0 	 + 1 	 = 	 1
w h e n 	 x 	 = 1 , 	 t 	 = 	 x
2
	 + 1 	 = 	 1 	 + 1 	 = 	 2
	 	 F r o m 	 e q . 	 ( i ) , 	
	
= 	
2 	 / 	 1 5
= 	
= 	 	
= 	
= 	 	 A n s . 	
2 . 	
A n s . 	 L e t 	 I 	 = 	 	 … … … . ( i )
P u t t i n g 	
	
	 	
T o 	 c h a n g e 	 t h e 	 l i m i t s 	 o f 	 i n t e g r a t i o n 	 f r o m 	 	 t o 	 	
W h e n 	 	
W h e n 	 	
	 	 F r o m 	 e q . 	 ( i ) ,
3 	 / 	 1 5
I 	 = 	
= 	
= 	
= 	
= 	
= 	
= 	
= 	
= 	
= 	
4 	 / 	 1 5
= 	
= 	 	 A n s . 	
3 . 	 	
A n s . 	 L e t 	 I 	 = 	 	 … … … . ( i )
P u t t i n g 	
	
	 	
L i m i t s 	 o f 	 i n t e g r a t i o n , 	 w h e n 	 	 	
w h e n 	
	
	 	 F r o m 	 e q . 	 ( i ) ,
I 	 = 	
= 	
5 	 / 	 1 5
= 	
= 	 	
[ A p p l y i n g 	 P r o d u c t 	 R u l e ]
= 	
= 	
= 	
= 	 	
= 	
= 	
= 	
= 	 	 A n s . 	
Read More
204 videos|290 docs|139 tests

Top Courses for JEE

FAQs on NCERT Solutions Class 12 Maths Chapter 7 - Integrals

1. What are integrals?
Ans. Integrals are mathematical tools used to calculate the area under a curve. They are also used to find the accumulation of quantities and solve various mathematical problems.
2. How are integrals used in real-life applications?
Ans. Integrals have numerous real-life applications, such as calculating the total distance traveled by an object, finding the average value of a function, determining the area of irregular shapes, and analyzing data in fields like physics, economics, and engineering.
3. What is the difference between definite and indefinite integrals?
Ans. Definite integrals have upper and lower limits and give a specific value as the result. They are used to find the accumulated amount of a quantity within a given interval. On the other hand, indefinite integrals do not have limits and yield a function as the result. They are used to find antiderivatives.
4. How can we solve integrals?
Ans. Integrals can be solved using various techniques, such as integration by substitution, integration by parts, trigonometric substitution, and partial fractions. The choice of technique depends on the complexity of the integrand and the available knowledge of integration rules.
5. Can integrals be used to solve differential equations?
Ans. Yes, integrals can be used to solve differential equations. Differential equations involve derivatives, and integrating both sides of the equation can help find their solutions. This process often leads to finding an antiderivative and applying initial conditions to determine the specific solution.
204 videos|290 docs|139 tests
Download as PDF
Explore Courses for JEE exam

Top Courses for JEE

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Previous Year Questions with Solutions

,

past year papers

,

Semester Notes

,

shortcuts and tricks

,

MCQs

,

Exam

,

NCERT Solutions Class 12 Maths Chapter 7 - Integrals

,

NCERT Solutions Class 12 Maths Chapter 7 - Integrals

,

Summary

,

video lectures

,

Free

,

Sample Paper

,

Extra Questions

,

Important questions

,

mock tests for examination

,

NCERT Solutions Class 12 Maths Chapter 7 - Integrals

,

study material

,

pdf

,

ppt

,

Objective type Questions

,

practice quizzes

,

Viva Questions

;