# NCERT Solutions - Limits and Derivatives, Class 11, Maths Notes - Class 11

## Class 11: NCERT Solutions - Limits and Derivatives, Class 11, Maths Notes - Class 11

The document NCERT Solutions - Limits and Derivatives, Class 11, Maths Notes - Class 11 is a part of Class 11 category.
All you need of Class 11 at this link: Class 11

NCERT QUESTION

( Limits And Derivatives )

Question 1:Evaluate the Given limit:

Question 2:Evaluate the Given limit:

Question 3:     Evaluate the Given limit:

Question 4:     Evaluate the Given limit:

Question 5:     Evaluate the Given limit:

Question 6:     Evaluate the Given limit:

Put x  1 = y so that y → 1 as x → 0.

Question 7:     Evaluate the Given limit:

At x = 2, the value of the given rational function takes the form .

Question 8:     Evaluate the Given limit:

At x = 2, the value of the given rational function takes the form .

Question 9:     Evaluate the Given limit:

Question 10:   Evaluate the Given limit:

At z = 1, the value of the given function takes the form .

Put  so that z →1 as x → 1.

Question 11:   Evaluate the Given limit:

Question 12:   Evaluate the Given limit:

At x = –2, the value of the given function takes the form .

Question 13:   Evaluate the Given limit:

At x = 0, the value of the given function takes the form .

Question 14:   Evaluate the Given limit:

At x = 0, the value of the given function takes the form .

Question 15:   Evaluate the Given limit:

It is seen that x → π ⇒ (π – x) → 0

Question 16:   Evaluate the given limit:

Question 17:   Evaluate the Given limit:

At x = 0, the value of the given function takes the form .

Now,

Question 18:   Evaluate the Given limit:

At x = 0, the value of the given function takes the form .

Now,

Question 19:   Evaluate the Given limit:

Question 20:   Evaluate the Given limit:

At x = 0, the value of the given function takes the form .

Now,

Question 21:   Evaluate the Given limit:

ANSWER :      At x = 0, the value of the given function takes the form .

Now,

Question 22:

At, the value of the given function takes the form .

Now, put  so that .

Question 23:   Find f(x) and f(x), where f(x) =

The given function is

f(x) =

Question 24:   Find f(x), where f(x) =

The given function is

Question 25:   Evaluate f(x), where f(x) =

The given function is

f(x) =

Question 26:   Find f(x), where f(x) =

The given function is

Question 27:   Find f(x), where f(x) =

The given function is f(x) =.

Question 28: Suppose f(x) =  and if f(x) = f(1) what are possible values of a and b?

The given function is

Thus, the respective possible values of a and b are 0 and 4.

Question 29:   Let be fixed real numbers and define a function

What is f(x)? For some  compute f(x).

The given function is

Question 30:   If f(x) =

For what value (s) of a does f(x) exists?

The given function is

When a < 0,

When a > 0

Thus,   exists for all a ≠ 0.

Question 31:   If the function f(x) satisfies , evaluate .

Question 32:

If For what integers m and n does  and  exist?

ANSWER :       The given function is

Thus,  exists if m = n.

Thus,  exists for any integral value of m and n.

Question 33:   Find the derivative of x2 – 2 at x = 10.

ANSWER :       Let f(x) = x2 – 2. Accordingly,

Thus, the derivative of x2 – 2 at x = 10 is 20.

Question 34:   Find the derivative of 99x at x = 100.

Let f(x) = 99x. Accordingly,

Thus, the derivative of 99x at x = 100 is 99.

Question 35:   Find the derivative of x at x = 1.

Let f(x) = x. Accordingly,

Thus, the derivative of x at x = 1 is 1.

Question 36 :  Find the derivative of the following functions from first principle.

(i) x3 – 27                               (ii) (x – 1) (x – 2)

(ii)                                     (iv)

(i) Let f(x) = x3 – 27. Accordingly, from the first principle,

(ii) Let f(x) = (x – 1) (x – 2). Accordingly, from the first principle,

(iii) Let . Accordingly, from the first principle,

(iv) Let . Accordingly, from the first principle,

Question 37:   For the function

Prove that

The given function is

Thus,

Question 38:   Find the derivative of for some fixed real number a.

Let

Question 39:   For some constants a and b, find the derivative of

(i) (x – a) (x – b)                   (ii) (ax2b)2                          (iii)

(i) Let f (x) = (x – a) (x – b)

(ii) Let

(iii)

By quotient rule,

Question 40:   Find the derivative of for some constant a.

By quotient rule,

Question 41:   Find the derivative of

(i)                                                                     (ii) (5x3 + 3x – 1) (x – 1)

(iii) x–3 (5+ 3x)                                                         (iv) x5 (3 – 6x–9)

(v) x–4 (3 – 4x–5)                                                         (vi)

(i) Let

(ii) Let f (x) = (5x3 + 3x – 1) (x – 1)

By Leibnitz product rule,

(iii) Let f (x) = x– 3 (5 +3x)

By Leibnitz product rule,

(iv) Let f (x) = x5 (3 – 6x–9)

By Leibnitz product rule,

(v) Let f (x) = x–4 (3 – 4x–5)

By Leibnitz product rule,

(vi) Let f (x) =

By quotient rule,

Question 42:   Find the derivative of cos x from first principle.

Let f (x) = cos x. Accordingly, from the first principle,

Question 43:   Find the derivative of the following functions:

(i) sin x cos x              (ii) sec x                                (iii) 5 sec x + 4 cos x                        (iv) cosec x       (v) 3cot x + 5cosec x      (vi) 5sin x – 6cos x  7        (vii) 2tan x – 7sec x

(i) Let f (x) = sin x cos x. Accordingly, from the first principle,

(ii) Let f (x) = sec x. Accordingly, from the first principle,

(iii) Let f (x) = 5 sec x+  4 cos x. Accordingly, from the first principle,

(iv) Let f (x) = cosec x. Accordingly, from the first principle,

(v) Let f (x) = 3cot x + 5cosec x. Accordingly, from the first principle,

From (1), (2), and (3), we obtain

(vi) Let f (x) = 5sin x – 6cos x  7. Accordingly, from the first principle,

(vii) Let f (x) = 2 tan x – 7 sec x. Accordingly, from the first principle,

Question 44:

Find the derivative of the following functions from first principle:

(i) –x (ii) (–x)–1 (iii) sin (x + 1)

(iv)

(i) Let f(x) = –x. Accordingly,

By first principle,

(ii) Let . Accordingly,

By first principle,

(iii) Let f(x) = sin (x + 1). Accordingly,

By first principle,

(iv) Let . Accordingly,

By first principle,

Question 45:   Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers): (xa)

Let f(x) = x  + a. Accordingly,

By first principle,

Question 46:   Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers):

By Leibnitz product rule,

Question 47:   Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers): (ax  + b) (cxd)2

Let

By Leibnitz product rule,

Question 48:   Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers):

By quotient rule,

Question 49:   Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers):

By quotient rule,

Question 50:

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers):

Let

By quotient rule,

Question 51:

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers):

By quotient rule,

Question 52:

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers):

By quotient rule,

Question 53:

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers):

Question 54:

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers):

Question 55:

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers): (axb)n

By first principle,

Question 56:

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers): (axb)n (cxd)m

Let

By Leibnitz product rule,

Therefore, from (1), (2), and (3), we obtain

Question 57:

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers): sin (xa)

Let

By first principle,

Question 58:

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers): cosec x cot x

Let

By Leibnitz product rule,

By first principle,

Now, let f2(x) = cosec x. Accordingly,

By first principle,

From (1), (2), and (3), we obtain

Question 59:

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers):

Let

By quotient rule,

Question 60:

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers):

Let

By quotient rule,

Question 61:

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers):

Let

By quotient rule,

Question 62:

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers): sinn x

Let y = sinn x.

Accordingly, for n = 1, y = sin x.

For n = 2, y = sin2 x.

For n = 3, y = sin3 x.

We assert that

Let our assertion be true for n = k.

i.e.,

Thus, our assertion is true for n = k  1.

Hence, by mathematical induction,

Question 63:

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers):

By quotient rule,

Question 64:

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers):

Let

By quotient rule,

By first principle,

From (i) and (ii), we obtain

Question 65:

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers): x4 (5 sin x – 3 cos x)

Let

By product rule,

Question 66:

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers): (x2 + 1) cos x

Let

By product rule,

Question 67:

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers): (ax2 + sin x) (p  + q cos x)

Let

By product rule,

Question 68:

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers):

Let

By product rule,

Let . Accordingly,

By first principle,

Therefore, from (i) and (ii), we obtain

Question 69:

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers):

Let

By quotient rule,

Question 70:

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers):

Let

By quotient rule,

]

Question 71:

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers):

Let

By first principle,

From (i) and (ii), we obtain

Question 72:

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers): (x + sec x) (x – tan x)

Let

By product rule,

From (i), (ii), and (iii), we obtain

Question 73:

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers):

Let

By quotient rule,

It can be easily shown that

Therefore,

The document NCERT Solutions - Limits and Derivatives, Class 11, Maths Notes - Class 11 is a part of Class 11 category.
All you need of Class 11 at this link: Class 11
 Use Code STAYHOME200 and get INR 200 additional OFF

Track your progress, build streaks, highlight & save important lessons and more!

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

;