Download, print and study this document offline |
Page 1 Optical processes and excitons • Dielectric function and reflectance • Kramers-Kronig relations • Excitons • Frenkel exciton • Mott-Wannier exciton • Raman spectroscopy Page 2 Optical processes and excitons • Dielectric function and reflectance • Kramers-Kronig relations • Excitons • Frenkel exciton • Mott-Wannier exciton • Raman spectroscopy Dielectric function, reflectivity r, and reflectance R Response of a crystal to an EM field is characterized by ? (k, ? ), (k ? 0 compared to G/2) Experimentalists prefer to measure reflectivity r (normal incidence) r E E ( ) ' ? ? ? ? ( ) i kx t E e ? ? ? ( ) ' i kx t E e ? ? ? ? Prob.3 where the refractive index ( ) ( ) n ? ? ? ? r n n R e i ( ) ( ) ( ) ? ? ? ? ? ? ? ? 1 1 It is easier to measure R than to measure ? ?measure R( ? ) for ? ? ? ? ( ? ) (with the help of KK relations) ? n( ? ) ? ? ( ? ) Page 3 Optical processes and excitons • Dielectric function and reflectance • Kramers-Kronig relations • Excitons • Frenkel exciton • Mott-Wannier exciton • Raman spectroscopy Dielectric function, reflectivity r, and reflectance R Response of a crystal to an EM field is characterized by ? (k, ? ), (k ? 0 compared to G/2) Experimentalists prefer to measure reflectivity r (normal incidence) r E E ( ) ' ? ? ? ? ( ) i kx t E e ? ? ? ( ) ' i kx t E e ? ? ? ? Prob.3 where the refractive index ( ) ( ) n ? ? ? ? r n n R e i ( ) ( ) ( ) ? ? ? ? ? ? ? ? 1 1 It is easier to measure R than to measure ? ?measure R( ? ) for ? ? ? ? ( ? ) (with the help of KK relations) ? n( ? ) ? ? ( ? ) Kramers-Kronig relations (1926) ( ) ( ) ' ( ) j E P E E r E ? ? ? ? ? ? ? ? ? ? ? ? ? ? Ohm ’ s law reflective EM wave polarization KK relation connects real part of the response function with the imaginary part m d dt d dt x F e F Z eE x t x e j i j j j i t j j j j i t 2 2 2 ? ? F H G I K J ? ? ? ? ? ? ? ? ? ? ? ? ? ? , ( ) steady state electric dipole examples of response function: p Z ex E Z e m i j j j j j j j j j ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ( ) ( ) 2 2 2 2 d i Example: Response of charged (independent) oscillators For the j-th oscillator (atom or molecule with Z bound charges), • does not depend on any dynamic detail of the interaction • the necessary and sufficient condition for its validity is causality Page 4 Optical processes and excitons • Dielectric function and reflectance • Kramers-Kronig relations • Excitons • Frenkel exciton • Mott-Wannier exciton • Raman spectroscopy Dielectric function, reflectivity r, and reflectance R Response of a crystal to an EM field is characterized by ? (k, ? ), (k ? 0 compared to G/2) Experimentalists prefer to measure reflectivity r (normal incidence) r E E ( ) ' ? ? ? ? ( ) i kx t E e ? ? ? ( ) ' i kx t E e ? ? ? ? Prob.3 where the refractive index ( ) ( ) n ? ? ? ? r n n R e i ( ) ( ) ( ) ? ? ? ? ? ? ? ? 1 1 It is easier to measure R than to measure ? ?measure R( ? ) for ? ? ? ? ( ? ) (with the help of KK relations) ? n( ? ) ? ? ( ? ) Kramers-Kronig relations (1926) ( ) ( ) ' ( ) j E P E E r E ? ? ? ? ? ? ? ? ? ? ? ? ? ? Ohm ’ s law reflective EM wave polarization KK relation connects real part of the response function with the imaginary part m d dt d dt x F e F Z eE x t x e j i j j j i t j j j j i t 2 2 2 ? ? F H G I K J ? ? ? ? ? ? ? ? ? ? ? ? ? ? , ( ) steady state electric dipole examples of response function: p Z ex E Z e m i j j j j j j j j j ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ( ) ( ) 2 2 2 2 d i Example: Response of charged (independent) oscillators For the j-th oscillator (atom or molecule with Z bound charges), • does not depend on any dynamic detail of the interaction • the necessary and sufficient condition for its validity is causality (1) ? ( ? ) has no pole above (including) x-axis. (2) along (upper) infinite semi-circle (3) ? ’ ( ? ) is even in ? , ? ’ ’ ( ? ) is odd in ? . Some properties of ? ( ? ): d ? ? ? ? ( ) z ? 0 Collection of oscillators P V Z ex E V Z e m i nZ e m i j j j j j j j j ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 2 2 2 2 2 2 0 2 2 ( ) ( ) / , (1) d i for identical oscillators 0 ? 1 4 ? ? ? ? ? Page 5 Optical processes and excitons • Dielectric function and reflectance • Kramers-Kronig relations • Excitons • Frenkel exciton • Mott-Wannier exciton • Raman spectroscopy Dielectric function, reflectivity r, and reflectance R Response of a crystal to an EM field is characterized by ? (k, ? ), (k ? 0 compared to G/2) Experimentalists prefer to measure reflectivity r (normal incidence) r E E ( ) ' ? ? ? ? ( ) i kx t E e ? ? ? ( ) ' i kx t E e ? ? ? ? Prob.3 where the refractive index ( ) ( ) n ? ? ? ? r n n R e i ( ) ( ) ( ) ? ? ? ? ? ? ? ? 1 1 It is easier to measure R than to measure ? ?measure R( ? ) for ? ? ? ? ( ? ) (with the help of KK relations) ? n( ? ) ? ? ( ? ) Kramers-Kronig relations (1926) ( ) ( ) ' ( ) j E P E E r E ? ? ? ? ? ? ? ? ? ? ? ? ? ? Ohm ’ s law reflective EM wave polarization KK relation connects real part of the response function with the imaginary part m d dt d dt x F e F Z eE x t x e j i j j j i t j j j j i t 2 2 2 ? ? F H G I K J ? ? ? ? ? ? ? ? ? ? ? ? ? ? , ( ) steady state electric dipole examples of response function: p Z ex E Z e m i j j j j j j j j j ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ( ) ( ) 2 2 2 2 d i Example: Response of charged (independent) oscillators For the j-th oscillator (atom or molecule with Z bound charges), • does not depend on any dynamic detail of the interaction • the necessary and sufficient condition for its validity is causality (1) ? ( ? ) has no pole above (including) x-axis. (2) along (upper) infinite semi-circle (3) ? ’ ( ? ) is even in ? , ? ’ ’ ( ? ) is odd in ? . Some properties of ? ( ? ): d ? ? ? ? ( ) z ? 0 Collection of oscillators P V Z ex E V Z e m i nZ e m i j j j j j j j j ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 2 2 2 2 2 2 0 2 2 ( ) ( ) / , (1) d i for identical oscillators 0 ? 1 4 ? ? ? ? ? (2) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ( ) ( ) '( ) ''( ) ''( ) ''( ) '( ) ''( ) ? ? ? ? ? ? ? ? ? F H G I K J ? ? ? ? ? ? ? ? ? ? ? z z z z z 1 1 1 2 0 0 2 2 0 i P s s ds P s s ds i P s s ds s s ds s s s ds property (3) used Also, From (1), (2), we have ( ?can be ? , or ? , or... ) ? ? ? ? ? ? ''( ) '( ) ? ? ? ? z 2 2 2 0 s s ds (3) A few sum rules: 2 0 0 ? ? ? ''( ) '( ) s s ds ? z ? An example of the “ fluctuation- dissipation ” relation 2 0 ? ? ? ? ? ? '( ) lim ''( ) s ds ? ? ? z = , (4) From (3), ? >>1 (Prob. 4): From (1) and (2), ? >>1 (Prob. 2): 2 1 0 2 2 ? ? s s ds V f f Z e m j j j j ''( ) ? z ? ? = , Thomas-Reiche- Kuhn sum rule and many more …, e.g., (4)+(5) (next page): ? ? '( ) s ds p ? ? z 1 8 2 0 ?Read More
210 videos|156 docs|94 tests
|
1. What are optical processes? |
2. What is an exciton? |
3. How do optical processes contribute to the formation of excitons? |
4. What are some applications of optical processes and excitons? |
5. How can excitons be manipulated to enhance optical processes? |
|
Explore Courses for Physics exam
|