PPT: Complex Integral | Engineering Mathematics - Civil Engineering (CE) PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


Defining Line Integrals in the Complex Plane
0
az ?
N
bz ?
1
z
2
z
1
?
3
z
2
?
3
?
N
?
1 N
z
?
n
z
n
?
x
y
#. ?
?? ???? ?? ?????????????? ?? ?? -1
?????? ?? ?? #.???????????????? ??h?? ???????? ?? ?? = 
?? =1
?? ?? ( ?
?? )(?? ?? -?? ?? -1
)
#. ?????? ??h?? ???????????? ???? ???????????????????????? ?? ? 8,
??????h ??h???? ??? ?? = ?? ?? -?? ?? -1
? 0?????? ???????????? ?? = 
?? ?? ?? ?? ???? = lim
?? ?8
?? ?? = lim
?? ?8
 
?? =1
?? ?? ( ?
?? )(?? ?? -?? ?? -1
)
(???????????? ???? ?????????????????????? ???? ??h?? ?????????????? ???? ??h?? ??????h ?????????????????????? )
C
2
Page 2


Defining Line Integrals in the Complex Plane
0
az ?
N
bz ?
1
z
2
z
1
?
3
z
2
?
3
?
N
?
1 N
z
?
n
z
n
?
x
y
#. ?
?? ???? ?? ?????????????? ?? ?? -1
?????? ?? ?? #.???????????????? ??h?? ???????? ?? ?? = 
?? =1
?? ?? ( ?
?? )(?? ?? -?? ?? -1
)
#. ?????? ??h?? ???????????? ???? ???????????????????????? ?? ? 8,
??????h ??h???? ??? ?? = ?? ?? -?? ?? -1
? 0?????? ???????????? ?? = 
?? ?? ?? ?? ???? = lim
?? ?8
?? ?? = lim
?? ?8
 
?? =1
?? ?? ( ?
?? )(?? ?? -?? ?? -1
)
(???????????? ???? ?????????????????????? ???? ??h?? ?????????????? ???? ??h?? ??????h ?????????????????????? )
C
2
Equivalence Between Complex and Real Line Integrals 
Note that-
So the complex line integral is equivalent to two real line integrals on C.
3
Page 3


Defining Line Integrals in the Complex Plane
0
az ?
N
bz ?
1
z
2
z
1
?
3
z
2
?
3
?
N
?
1 N
z
?
n
z
n
?
x
y
#. ?
?? ???? ?? ?????????????? ?? ?? -1
?????? ?? ?? #.???????????????? ??h?? ???????? ?? ?? = 
?? =1
?? ?? ( ?
?? )(?? ?? -?? ?? -1
)
#. ?????? ??h?? ???????????? ???? ???????????????????????? ?? ? 8,
??????h ??h???? ??? ?? = ?? ?? -?? ?? -1
? 0?????? ???????????? ?? = 
?? ?? ?? ?? ???? = lim
?? ?8
?? ?? = lim
?? ?8
 
?? =1
?? ?? ( ?
?? )(?? ?? -?? ?? -1
)
(???????????? ???? ?????????????????????? ???? ??h?? ?????????????? ???? ??h?? ??????h ?????????????????????? )
C
2
Equivalence Between Complex and Real Line Integrals 
Note that-
So the complex line integral is equivalent to two real line integrals on C.
3
Review of Line Integral Evaluation 
t
t
-a a
t
-a a
1
t
2
t
3
t
1 N
t
?
C
n
t
x
y
0
t
fN
tt ?
1
t
2
t
3
t
1 N
t
? n
t
… …
0
t
fN
tt ?
t
A line integral written as 
is really a shorthand for:
where t is some parameterization of C :
or
Example- Parameterization of the circle     x
2 
+ y
2
= a
2
1) x= a cos(t), y= a sin(t),      0 ? t(= ?) ? 2 ?
2) x= t,  y= ?? 2
-?? 2
, t
0
= ?? , t
f=-
a
And  x= t,  y=- ?? 2
-?? 2
, t
0
= -?? , t
f=
a
}
(?? ?? ,?? ?? )
4
Page 4


Defining Line Integrals in the Complex Plane
0
az ?
N
bz ?
1
z
2
z
1
?
3
z
2
?
3
?
N
?
1 N
z
?
n
z
n
?
x
y
#. ?
?? ???? ?? ?????????????? ?? ?? -1
?????? ?? ?? #.???????????????? ??h?? ???????? ?? ?? = 
?? =1
?? ?? ( ?
?? )(?? ?? -?? ?? -1
)
#. ?????? ??h?? ???????????? ???? ???????????????????????? ?? ? 8,
??????h ??h???? ??? ?? = ?? ?? -?? ?? -1
? 0?????? ???????????? ?? = 
?? ?? ?? ?? ???? = lim
?? ?8
?? ?? = lim
?? ?8
 
?? =1
?? ?? ( ?
?? )(?? ?? -?? ?? -1
)
(???????????? ???? ?????????????????????? ???? ??h?? ?????????????? ???? ??h?? ??????h ?????????????????????? )
C
2
Equivalence Between Complex and Real Line Integrals 
Note that-
So the complex line integral is equivalent to two real line integrals on C.
3
Review of Line Integral Evaluation 
t
t
-a a
t
-a a
1
t
2
t
3
t
1 N
t
?
C
n
t
x
y
0
t
fN
tt ?
1
t
2
t
3
t
1 N
t
? n
t
… …
0
t
fN
tt ?
t
A line integral written as 
is really a shorthand for:
where t is some parameterization of C :
or
Example- Parameterization of the circle     x
2 
+ y
2
= a
2
1) x= a cos(t), y= a sin(t),      0 ? t(= ?) ? 2 ?
2) x= t,  y= ?? 2
-?? 2
, t
0
= ?? , t
f=-
a
And  x= t,  y=- ?? 2
-?? 2
, t
0
= -?? , t
f=
a
}
(?? ?? ,?? ?? )
4
Review of Line Integral Evaluation, cont’d 
1
t
2
t
3
t
1 N
t
?
C
n
t
x
y
0
t
fN
tt ?
While it may be possible to parameterize C(piecewise) using x 
and/or y as the independent parameter, it must be remembered 
that the other variable is always a function of that parameter i.e.-
(x is the independent parameter)
(y is the independent parameter)
(?? ?? ,?? ?? )
5
Page 5


Defining Line Integrals in the Complex Plane
0
az ?
N
bz ?
1
z
2
z
1
?
3
z
2
?
3
?
N
?
1 N
z
?
n
z
n
?
x
y
#. ?
?? ???? ?? ?????????????? ?? ?? -1
?????? ?? ?? #.???????????????? ??h?? ???????? ?? ?? = 
?? =1
?? ?? ( ?
?? )(?? ?? -?? ?? -1
)
#. ?????? ??h?? ???????????? ???? ???????????????????????? ?? ? 8,
??????h ??h???? ??? ?? = ?? ?? -?? ?? -1
? 0?????? ???????????? ?? = 
?? ?? ?? ?? ???? = lim
?? ?8
?? ?? = lim
?? ?8
 
?? =1
?? ?? ( ?
?? )(?? ?? -?? ?? -1
)
(???????????? ???? ?????????????????????? ???? ??h?? ?????????????? ???? ??h?? ??????h ?????????????????????? )
C
2
Equivalence Between Complex and Real Line Integrals 
Note that-
So the complex line integral is equivalent to two real line integrals on C.
3
Review of Line Integral Evaluation 
t
t
-a a
t
-a a
1
t
2
t
3
t
1 N
t
?
C
n
t
x
y
0
t
fN
tt ?
1
t
2
t
3
t
1 N
t
? n
t
… …
0
t
fN
tt ?
t
A line integral written as 
is really a shorthand for:
where t is some parameterization of C :
or
Example- Parameterization of the circle     x
2 
+ y
2
= a
2
1) x= a cos(t), y= a sin(t),      0 ? t(= ?) ? 2 ?
2) x= t,  y= ?? 2
-?? 2
, t
0
= ?? , t
f=-
a
And  x= t,  y=- ?? 2
-?? 2
, t
0
= -?? , t
f=
a
}
(?? ?? ,?? ?? )
4
Review of Line Integral Evaluation, cont’d 
1
t
2
t
3
t
1 N
t
?
C
n
t
x
y
0
t
fN
tt ?
While it may be possible to parameterize C(piecewise) using x 
and/or y as the independent parameter, it must be remembered 
that the other variable is always a function of that parameter i.e.-
(x is the independent parameter)
(y is the independent parameter)
(?? ?? ,?? ?? )
5
Line Integral Example
Consider-
x
y
C
?
r
z z
It’s a useful result and a 
special case of the 
“residue theorem”
?? .???????????????? 
?? ?? ?? ???? ,??h?????? ?? :?? = ???????? ?? ,?? = ?????????? , 0= ?? = 2??
? ?? = ?????????? +???????????? = ?? ?? ????
,
? ???? = ???? ?? ????
???? 6
Read More
65 videos|122 docs|94 tests

FAQs on PPT: Complex Integral - Engineering Mathematics - Civil Engineering (CE)

1. What is a complex integral?
Ans. A complex integral is a mathematical concept that extends the concept of integration from real numbers to complex numbers. It involves calculating the integral of a complex-valued function along a given path in the complex plane.
2. How is a complex integral evaluated?
Ans. Evaluating a complex integral involves parameterizing the given path and then using techniques like the Cauchy-Riemann equations, residue theorem, or contour integration to simplify the integral. The integral can then be computed using standard integration techniques.
3. What are some applications of complex integrals?
Ans. Complex integrals have various applications in mathematics and physics. They are used in the study of complex analysis, potential theory, fluid dynamics, and quantum mechanics. They help in solving problems related to harmonic functions, path integrals, and calculating residues.
4. What is the relationship between complex integrals and complex differentiation?
Ans. Complex integration and complex differentiation are intimately related through the Cauchy integral formula. The formula states that if a function is analytic (complex differentiable) within a simply connected region, then the integral of the function over a closed path within that region is zero.
5. How do contour integrals relate to complex integrals?
Ans. Contour integrals are a specific type of complex integrals that are evaluated along a closed curve or contour in the complex plane. They are used to calculate the values of complex integrals and have applications in areas such as complex analysis, physics, and engineering. Contour integrals can be evaluated using techniques like the residue theorem or by parameterizing the contour and performing standard integration.
Related Searches

Free

,

past year papers

,

Semester Notes

,

Previous Year Questions with Solutions

,

Extra Questions

,

Objective type Questions

,

mock tests for examination

,

Important questions

,

ppt

,

PPT: Complex Integral | Engineering Mathematics - Civil Engineering (CE)

,

Exam

,

MCQs

,

pdf

,

PPT: Complex Integral | Engineering Mathematics - Civil Engineering (CE)

,

study material

,

video lectures

,

Sample Paper

,

practice quizzes

,

Viva Questions

,

PPT: Complex Integral | Engineering Mathematics - Civil Engineering (CE)

,

Summary

,

shortcuts and tricks

;