Permutations and Combinations - Quantitative Aptitude

# Permutations and Combinations - Quantitative Aptitude | Quantitative Aptitude for Competitive Examinations - Banking Exams PDF Download

Permutations and Combinations

Definition : Permutations are the different ways in which a collection of items can be arranged.
For example:
The different ways in which the alphabets A, B and C can be grouped together, taken all at a time, are ABC, ACB, BCA, CBA, CAB, BAC.
Note that ABC and CBA are not same as the order of arrangement is different. The same rule applies while solving any problem in Permutations.
The number of ways in which n things can be arranged, taken all at a time, P = n!, called ‘n factorial.’

Factorial Formula

Factorial of a number n is deffned as the product of all the numbers from n to 1.
For example, the factorial of 5, 5! = 5*4*3*2*1 = 120.

Therefore, the number of ways in which the 3 letters can be arranged, taken all a time, is 3! = 3*2*1 = 6 ways.
Number of permutations of n things, taken r at a time, denoted by:

nPr = n! / (n-r)!
For example:
The different ways in which the 3 letters, taken 2 at a time, can be arranged is 3!/(3-2)! = 3!/1! = 6 ways.

Important Permutation Formulas

1! = 1
0! = 1
Let us take a look at some examples:

Problem 1: Find the number of words, with or without meaning, that can be formed with the letters of the word ‘CHAIR’.
Solution:
‘CHAIR’ contains 5 letters.
Therefore, the number of words that can be formed with these 5 letters = 5! = 5*4*3*2*1 = 120.

Problem 2: Find the number of words, with or without meaning, that can be formed with the letters of the word ‘INDIA’.
Solution:

The word ‘INDIA’ contains 5 letters and ‘I’ comes twice.

When a letter occurs more than once in a word, we divide the factorial of the number of all letters in the word by the number of occurrences of each letter.
Therefore, the number of words formed by ‘INDIA’ = 5!/2! = 60.

Problem 3: Find the number of words, with or without meaning, that can be formed with the letters of the word ‘SWIMMING?
Solution:

The word ‘SWIMMING contains 8 letters. Of which, I occurs twice and M occurs twice.
Therefore, the number of words formed by this word = 8! / (2!*2!) = 10080.

Problem 4: How many different words can be formed with the letters of the word ‘SUPER’ such that the vowels always come together?
Solution:
The word ‘SUPER’ contains 5 letters.
In order to ffnd the number of permutations that can be formed where the two vowels U and E come together.
In these cases, we group the letters that should come together and consider that group as one letter.
So, the letters are S,P,R, (UE). Now the number of words are 4.
Therefore, the number of ways in which 4 letters can be arranged is 4!
In U and E, the number of ways in which U and E can be arranged is 2!

Hence, the total number of ways in which the letters of the ‘SUPER’ can be arranged such that vowels are always together are 4! * 2! = 48 ways.

Problem 5: Find the number of different words that can be formed with the letters of the word ‘BUTTER’ so that the vowels are always together.
Solution:
The word ‘BUTTER’ contains 6 letters.
The letters U and E should always come together. So the letters are B, T, T, R, (UE).
Number of ways in which the letters above can be arranged = 5!/2! = 60 (since the letter ‘T’ is repeated twice).
Number of ways in which U and E can be arranged = 2! = 2 ways Therefore, total number of permutations possible = 60*2 = 120 ways.

Problem 6: Find the number of permutations of the letters of the word ‘REMAINS’ such that the vowels always occur in odd places.
Solution:
The word ‘REMAINS’ has 7 letters.
There are 4 consonants and 3 vowels in it.
Writing in the following way makes it easier to solve these type of questions. (1) (2) (3) (4) (5) (6) (7)
No. of ways 3 vowels can occur in 4 different places = 4P3 = 24 ways.

After 3 vowels take 3 places, no. of ways 4 consonants can take 4 places = P = 4! = 24 ways.
Therefore, total number of permutations possible = 24*24 = 576 ways.

Combinations

Deffnition :
The different selections possible from a collection of items are called combinations.

For example:
The different selections possible from the alphabets A, B, C, taken 2 at a time, are AB, BC and CA.
It does not matter whether we select A after B or B after A. The order of selection is not important in combinations.
To ffnd the number of combinations possible from a given group of items n, taken r at a time, the formula, denoted by nCr is
nCr = n! / [r! * (n-r)!]

For example, verifying the above example, the different selections possible from the alphabets A, B, C, taken two at a time are

3C2= 3! / (2! * (3-2)!) = 3 possible selections (i.e., AB, BC, CA)

Important Combination formulas

nCn = 1
nC0 = 1
nC1 = n
nCr = nC(n-r)

The number of selections possible with A, B, C, taken all at a time is 3C3 = 1 (i.e.
ABC)

Solved examples of Combination

Let us take a look at some examples to understand how Combinations work:

Problem 1: In how many ways can a committee of 1 man and 3 women can be formed from a group of 3 men and 4 women?
Solution:
No. of ways 1 man can be selected from a group of 3 men = C = 3! / 1!*(3-1)! = 3 ways.
No. of ways 3 women can be selected from a group of 4 women = C = 4! / (3!*1!) = 4 ways.

Problem 2: Among a set of 5 black balls and 3 red balls, how many selections of 5 balls can be made such that at least 3 of them are black balls.
Solution:

Selecting at least 3 black balls from a set of 5 black balls in a total selection of 5 balls can be
3 B and 2 R
4 B and 1 R and
5 B and 0 R balls.
Therefore, our solution expression looks like this.
5C3 * 3C2 + 5C4 * 5C5 + 3C1 * 3C0 = 46 ways .

Problem 3: How many 4 digit numbers that are divisible by 10 can be formed from the numbers 3, 5, 7, 8, 9, 0 such that no number repeats?
Solution:

If a number is divisible by 10, its units place should contain a 0. _ _ _ 0
After 0 is placed in the units place, the tens place can be fflled with any of the other 5 digits.
Selecting one digit out of 5 digits can be done in 5C1 = 5 ways.
After fflling the tens place, we are left with 4 digits. Selecting 1 digit out of 4 digits can be done in 4C1 = 4 ways.
After fflling the hundreds place, the thousands place can be fflled in 3C1 = 3 ways.
Therefore, the total combinations possible = 5*4*3 = 60.

Permutations and Combinations Quiz Try these practice problems.
Problem 1 Solve the following.

i) 30P2 ii) 30C2

A. 870, 435
B. 435, 870
C. 870, 470
D. 435, 835
Solution :

A
Explanation: 30P2 = 30! / 28! = 30*29*28! / 28! = 30*29 = 870.
30C2 = 30! / (2!*28!) = 435.

Problem 2 :
How many different possible permutations can be made from the word ‘BULLET’ such that the vowels are never together?
A. 360
B. 120
C. 480
D. 240
Explanation:

The word ‘BULLET’ contains 6 letters of which 1 letter occurs twice = 6! / 2! = 360 No. of permutations possible with vowels always together = 5! * 2! / 2! = 120

No. of permutations possible with vowels never together = 360-120 = 240.

Problem 3 In how many ways can a selection of 3 men and 2 women can be made from a group of 5 men and 5 women ?
A. 10
B. 20
C. 30
D. 100

Explanation:
5C3 * 5C2 = 100

The document Permutations and Combinations - Quantitative Aptitude | Quantitative Aptitude for Competitive Examinations - Banking Exams is a part of the Banking Exams Course Quantitative Aptitude for Competitive Examinations.
All you need of Banking Exams at this link: Banking Exams

## Quantitative Aptitude for Competitive Examinations

37 videos|53 docs|148 tests

## FAQs on Permutations and Combinations - Quantitative Aptitude - Quantitative Aptitude for Competitive Examinations - Banking Exams

 1. What is the difference between permutations and combinations?
Ans. Permutations and combinations are mathematical concepts used in counting and arranging objects. The main difference between them is that permutations take into account the order of the objects, while combinations do not. In permutations, the order matters, meaning that different arrangements of the same objects are considered distinct. In combinations, the order does not matter, so different arrangements of the same objects are considered equivalent.
 2. How do I calculate the number of permutations?
Ans. The number of permutations can be calculated using the formula nPr = n! / (n - r)!, where n is the total number of objects and r is the number of objects taken at a time. "!" denotes the factorial function, which means multiplying a number by all the positive integers less than it down to 1. For example, if you have 5 objects and you want to arrange 3 of them, the number of permutations would be 5P3 = 5! / (5 - 3)! = 5! / 2! = 60.
 3. How do I calculate the number of combinations?
Ans. The number of combinations can be calculated using the formula nCr = n! / (r!(n - r)!), where n is the total number of objects and r is the number of objects taken at a time. Again, "!" denotes the factorial function. Using the same example as before, if you have 5 objects and you want to choose 3 of them without considering the order, the number of combinations would be 5C3 = 5! / (3!(5 - 3)!) = 5! / (3!2!) = 10.
 4. What is the significance of permutations and combinations in banking exams?
Ans. Permutations and combinations are often tested in quantitative aptitude sections of banking exams to assess a candidate's ability to solve complex counting problems. These concepts are useful in solving problems related to probability, arranging objects, and selecting objects from a given set. Having a strong grasp of permutations and combinations can help candidates solve these types of problems efficiently and accurately.
 5. Can you provide an example of a banking exam question involving permutations or combinations?
Ans. Sure! Here's an example: "In a committee of 5 members, consisting of 3 men and 2 women, how many different ways can a president, vice-president, and treasurer be selected if the positions can be held by any member of the committee?" To solve this problem, you would use the concept of permutations. Since the positions can be held by any member, you would calculate the number of permutations of 5 objects taken 3 at a time. The answer would be 5P3 = 5! / (5 - 3)! = 5! / 2! = 60, meaning there are 60 different ways to select a president, vice-president, and treasurer from the committee.

## Quantitative Aptitude for Competitive Examinations

37 videos|53 docs|148 tests

### Up next

 Explore Courses for Banking Exams exam

### Top Courses for Banking Exams

Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Track your progress, build streaks, highlight & save important lessons and more!
Related Searches

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

;