Pressure Vessels (Thin Cylinder) Notes | EduRev

Strength of Materials (SOM)

Mechanical Engineering : Pressure Vessels (Thin Cylinder) Notes | EduRev

The document Pressure Vessels (Thin Cylinder) Notes | EduRev is a part of the Mechanical Engineering Course Strength of Materials (SOM).
All you need of Mechanical Engineering at this link: Mechanical Engineering

Introduction

Thin pressure vessel is defined as a closed cylindrical or spherical container designed to hold or store fluids at a pressure substantially different from ambient pressure. Pressure vessels can be classified as
(i) on the basis of ratio of diameter to its thickness
Pressure Vessels (Thin Cylinder) Notes | EduRev

where, D is the inner diameter of the shell & t is the thickness of the shell.
(ii) On the basis of shape of the pressure vessel
Pressure Vessels (Thin Cylinder) Notes | EduRev

However, Spherical pressure vessels are better, but due to fabrication difficulty, cylindrical pressure vessels are most commonly used.
Common examples of pressure vessels are steam boilers, reservoirs, tanks, working chambers of engines, gas cylinders etc. 

Thin Cylindrical Shell Subject To Internal Pressure

Consider a thin cylinder of internal diameter d and wall thickness t, subject to internal gauge pressure P. The following stresses are induced in the cylinder-
(a) Circumferential tensile stress (or hoop stress) σH.
(b) Longitudinal (or axial) tensile stress σL.
(c) Radial compressive stress σR which varies from a value at the inner surface equal to the atmosphere pressure at the outside surface.

Assumptions followed in thin pressure vessels

  • Stresses are assumed to be distributed uniformly
  • Area is calculated considering the pressure vessel as thin
  • Radial stresses are neglected
  • Biaxial state of stress is assumed to be applicable

(a) Circumferential stress or Hoop stress, σH
There are normal stresses which act in the direction of circumference. Due to internal fluid pressure these are tensile in nature. In thin pressure vessels, hoop stresses are assumed to be uniform across thickness.

Pressure Vessels (Thin Cylinder) Notes | EduRev

In the figure we have shown a one half of the cylinder. This cylinder is subjected to an internal pressure P.
Pressure force by fluid ≤ Resisting force owing to hoop stresses σH
P x Projected Area ≤ 2.σh.L.t
P.d.L ≤ 2.σh.L.t
Pressure Vessels (Thin Cylinder) Notes | EduRev
For equilibrium σH = pd/2t
In ηL is the efficiency of the Longitudinal riveted joint,
Pressure Vessels (Thin Cylinder) Notes | EduRev
Similarly,
(b) Longitudinal stress (or axial stress) σL
Pressure force by fluid ≤ Resisting force owing to longitudinal stresses σL
Pressure Vessels (Thin Cylinder) Notes | EduRev
Pressure Vessels (Thin Cylinder) Notes | EduRev
For equilibrium, σ= Pd/4t
In ηL is the efficiency of the circumferential riveted joint,
Pressure Vessels (Thin Cylinder) Notes | EduRev
Thus, the magnitude of the longitudinal stress is one half of the circumferential stress, both the stresses being of tensile nature.
Hoop strain or Circumferential strain -
Pressure Vessels (Thin Cylinder) Notes | EduRev
Pressure Vessels (Thin Cylinder) Notes | EduRev

Longitudinal Strain or axial strain
Pressure Vessels (Thin Cylinder) Notes | EduRev
Pressure Vessels (Thin Cylinder) Notes | EduRev

Ratio of Hoop Strain to Longitudinal Strain
Pressure Vessels (Thin Cylinder) Notes | EduRev

Volumetric Strain or Change in the Internal Volume

Pressure Vessels (Thin Cylinder) Notes | EduRev

Thin Spherical Shells

Figure shows a thin spherical shell of internal diameter ‘d’ and thickness ‘t’ and subjected to an internal fluid pressure ‘P’.
Pressure Vessels (Thin Cylinder) Notes | EduRev

Hoop stress/longitudinal stress
Pressure force by fluid ≤ Resisting force owing to Hoop/Longitudinal stresses
Pressure Vessels (Thin Cylinder) Notes | EduRev
Pressure Vessels (Thin Cylinder) Notes | EduRev
Pressure Vessels (Thin Cylinder) Notes | EduRev

Hoop stress/longitudinal strain

Pressure Vessels (Thin Cylinder) Notes | EduRev

Volumetric strain of sphere

Pressure Vessels (Thin Cylinder) Notes | EduRev

Thick Pressure Vessels

In thick vessels pressure vary from maximum at inner surface to minimum at outer surface.
(i) In thick cylinders hoop stress due to inside pressure is Maximum inside and Minimum outside
(ii) In thick cylinders longitudinal stress due to inside pressure is constant
(iii) Radial pressure is maximum inside, zero outside and compressive throughout.

Analysis of thick shells using lame’s theorem
In this theorem the material is assumed to be homogeneous and isotropic and the longitudinal stress are assumed to be constant throughout.
Hoop stress-
Pressure Vessels (Thin Cylinder) Notes | EduRev
Radial pressure -
Pressure Vessels (Thin Cylinder) Notes | EduRev
Where A & B are Lame’s constant and they and they are always positive.
By solving these two equations for different boundary conditions, we can find out value of A & B.
Subjected to only Internal Pressure (p), radial pressure at inside and outside radii is-
Pressure Vessels (Thin Cylinder) Notes | EduRev
Pressure Vessels (Thin Cylinder) Notes | EduRev
Subjected to External Pressure (p), radial pressure at inside and outside radii is-
Pressure Vessels (Thin Cylinder) Notes | EduRev
Pressure Vessels (Thin Cylinder) Notes | EduRev

Offer running on EduRev: Apply code STAYHOME200 to get INR 200 off on our premium plan EduRev Infinity!

Related Searches

Previous Year Questions with Solutions

,

Extra Questions

,

ppt

,

Semester Notes

,

Exam

,

MCQs

,

Important questions

,

practice quizzes

,

Sample Paper

,

pdf

,

Summary

,

study material

,

Free

,

shortcuts and tricks

,

video lectures

,

mock tests for examination

,

Pressure Vessels (Thin Cylinder) Notes | EduRev

,

Viva Questions

,

Objective type Questions

,

Pressure Vessels (Thin Cylinder) Notes | EduRev

,

Pressure Vessels (Thin Cylinder) Notes | EduRev

,

past year papers

;