RD Sharma Solutions - Chapter 17 - Understanding Shapes-III (Part - 2), Class 8, Maths Class 8 Notes | EduRev

RD Sharma Solutions for Class 8 Mathematics

Created by: Abhishek Kapoor

Class 8 : RD Sharma Solutions - Chapter 17 - Understanding Shapes-III (Part - 2), Class 8, Maths Class 8 Notes | EduRev

The document RD Sharma Solutions - Chapter 17 - Understanding Shapes-III (Part - 2), Class 8, Maths Class 8 Notes | EduRev is a part of the Class 8 Course RD Sharma Solutions for Class 8 Mathematics.
All you need of Class 8 at this link: Class 8

PAGE NO 17.16:

Question 1:

Which of the following statements are true for a rhombus?
 (i) It has two pairs of parallel sides.
 (ii) It has two pairs of equal sides.
 (iii) It has only two pairs of equal sides.
 (iv) Two of its angles are at right angles.
 (v) Its diagonals bisect each other at right angles.
 (vi) Its diagonals are equal and perpendicular.
 (vii) It has all its sides of equal lengths.
 (viii) It is a parallelogram.
 (ix) It is a quadrilateral.
 (x) It can be a square.
 (xi) It is a square.

ANSWER:

(i) True
(ii) True
(iii) True
(iv) False
(v) True
(vi) False

Diagonals of a rhombus are perpendicular, but not equal.
(vii) True

(viii) True
It is a parallelogram because it has two pairs of parallel sides.

(ix) True
It is a quadrilateral because it has four sides.

(x) True
It can be a square if each of the angle is a right angle.

(xi) False
It is not a square because each of the angle is a right angle in a square.


PAGE NO 17.17:

Question 2:

Fill in the blanks, in each of the following, so as to make the statement true:
 (i) A rhombus is a parallelogram in which ......
 (ii) A square is a rhombus in which ......
 (iii)  A rhombus has all its sides of ...... length.
 (iv) The diagonals of a rhombus ...... each other at ...... angles.
 (v) If the diagonals of a parallelogram bisect each other at right angles, then it is a ......

ANSWER:

(i) A rhombus is a parallelogram in which adjacent sides are equal.
(ii) A square is a rhombus in which all angles are right angled.
(iii) A rhombus has all its sides of equal length.
(iv) The diagonals of a rhombus bisect each other at right angles.
(v) If the diagonals of a parallelogram bisect each other at right angles, then it is a rhombus.


Question 3:

The diagonals of a parallelogram are not perpendicular. Is it a rhombus? Why or why not?

ANSWER:

No, it is not a rhombus. This is because diagonals of a rhombus must be perpendicular.


Question 4:

The diagonals of a quadrilateral are perpendicular to each other. Is such a quadrilateral always a rhombus? If your answer is 'No', draw a figure to justify your answer.

ANSWER:

No, it is not so.
Diagonals of a rhombus are perpendicular and bisect each other. Along with this, all of its sides are equal. In the figure given below, the diagonals are perpendicular to each other, but do not bisect each other.

RD Sharma Solutions - Chapter 17 - Understanding Shapes-III (Part - 2), Class 8, Maths Class 8 Notes | EduRev


Question 5:

ABCD is a rhombus. If ∠ACB  = 40°, find ∠ADB.

ANSWER:

RD Sharma Solutions - Chapter 17 - Understanding Shapes-III (Part - 2), Class 8, Maths Class 8 Notes | EduRev

 

In a rhombus, the diagonals  are perpendicular.

∴ ∠BPC = 90°

From Δ BPC, the sum of angles is 180°.

∴ ∠CBP + ∠BPC + ∠PBC = 180°

∠CBP = 180°−∠BPC−∠PBC

∠CBP = 180°−40°−90° = 50° 

∠ADB = ∠CBP = 50°  (alternate angle)


Question 6:

If the diagonals of a rhombus are 12 cm and 16cm, find the length of each side.

ANSWER:

RD Sharma Solutions - Chapter 17 - Understanding Shapes-III (Part - 2), Class 8, Maths Class 8 Notes | EduRev

 

All sides of a rhombus are equal in length.The diagonals intersect at 90° and the sides of the rhombus form right triangles.

One leg of these right triangles is equal to 8 cm and the other is equal to 6 cm.

The sides of the triangle form the hypotenuse of these right triangles.

So, we get:(82 + 62)cm² = (64 + 36)cm² = 100 cm²

The hypotneuse is the square root of 100cm². 

This makes the hypotneuse equal to 10.

Thus, the side of the rhombus is equal to 10 cm.


Question 7:

Construct a rhombus whose diagonals are of length 10 cm and 6 cm.

ANSWER:

RD Sharma Solutions - Chapter 17 - Understanding Shapes-III (Part - 2), Class 8, Maths Class 8 Notes | EduRev

1. Draw AC equal to 10 cm.
2. Draw XY, the right bisector of AC, meeting it at O.
3. With O as centre and radius equal to half of the length of the other diagonal,
    i.e. 3 cm, cut OB = OD = 3 cm.
4. Join AB, AD and CB, CD.


Question 8:

Draw a rhombus, having each side of length 3.5 cm and one of the angles as 40°.

ANSWER:

RD Sharma Solutions - Chapter 17 - Understanding Shapes-III (Part - 2), Class 8, Maths Class 8 Notes | EduRev

1. Draw a line segment AB of 3.5 cm.
2. Draw ∠BAX equal to 40°.
3. With A as centre and the radius equal to AB, cut AD at 3.5 cm.
4. With D as centre, cut an arc of radius 3.5 cm.
5. With B as centre, cut an arc of radius 3.5 cm. This arc cuts the arc of step 4 at C.
6. Join DC and BC.


Question 9:

One side of a rhombus is of length 4 cm and the length of an altitude is 3.2 cm. Draw the rhombus.

ANSWER:

RD Sharma Solutions - Chapter 17 - Understanding Shapes-III (Part - 2), Class 8, Maths Class 8 Notes | EduRev

1. Draw a line segment AB of 4 cm.
2. Draw a perpendicular XY on AB, which intersects AB at P.
3. With P as centre, cut PE at 3.2 cm.
4. Draw a line WZ that passes through E. This line should be parallel to AB.
5. With A as centre, draw an arc of radius 4 cm that cuts WZ at D.
6. With D as centre and radius 4 cm, cut line DZ. Label it as point C.
4. Join AD and CB.


Question 10:

Draw a rhombus ABCD, if AB  = 6 cm and AC  = 5 cm.

ANSWER:

RD Sharma Solutions - Chapter 17 - Understanding Shapes-III (Part - 2), Class 8, Maths Class 8 Notes | EduRev

1. Draw a line segment AC of 5 cm.
2. With A as centre, draw an arc of radius 6 cm on each side of AC.
3. With C as centre, draw an arc of radius 6 cm on each side of AC. These arcs intersect the arcs of step 2 at B and D.
4. Join AB, AD, CD and CB.


Question 11:

ABCD is a rhombus and its diagonals intersect at O.
 (i) Is ∆BOC ≅ ∆DOC? State the congruence condition used?
 (ii) Also state, if ∠BCO  = ∠DCO.

ANSWER:

RD Sharma Solutions - Chapter 17 - Understanding Shapes-III (Part - 2), Class 8, Maths Class 8 Notes | EduRev

 

(i) Yes

In ΔBCO and ΔDCO:

OC = OC (common)

BC = DC (all sides of a rhombus are equal)

BO = OD (diagonals of a rhomus bisect each other)

By SSS congruence:ΔBCO ≅ ΔDCO
(ii) Yes
By c.p.c.t:
∠BCO = ∠DCO


Question 12:

Show that each diagonal of a rhombus bisects the angle through which it passes.

ANSWER:

RD Sharma Solutions - Chapter 17 - Understanding Shapes-III (Part - 2), Class 8, Maths Class 8 Notes | EduRev

 

In ΔAED and ΔDEC: 

AE = EC  (diagonals bisect each other)

AD = DC (sides are equal)

DE = DE (common)

By SSS congruence: ΔAED≅ ΔCED

∠ADE = ∠CDE (c.p.c.t)

Similarly, we can prove ΔAEB and ΔBEC, ΔBEC and ΔDEC, ΔAED and ΔAEB are congruent to each other.

Hence, diagonal of a rhombus bisects the angle through which it passes.


Question 13:

ABCD is a rhombus whose diagonals intersect at O. If  AB  = 10 cm, diagonal BD  = 16 cm, find the length of diagonal AC.

ANSWER:

RD Sharma Solutions - Chapter 17 - Understanding Shapes-III (Part - 2), Class 8, Maths Class 8 Notes | EduRev

We know that the diagonals of a rhombus bisect each other at right angles.

∴ BO = 1/2 BD = (1/2×16) cm = 8cm

AB = 10 cm and

∠AOB = 90°

From right ΔOAB: AB2 = AO+ BO2

⇒ AO2 = (AB2–BO2)

⇒ AO2 = (10)2−(8)2cm²

⇒ AO2 = (100−64) cm²

= 36cm²

⇒ AO = RD Sharma Solutions - Chapter 17 - Understanding Shapes-III (Part - 2), Class 8, Maths Class 8 Notes | EduRev  cm = 6cm

∴ AC = 2×AO = (2×6) cm = 12 cm


Question 14:

The diagonals of a quadrilateral are of lengths 6 cm and 8 cm.
 If the diagonals bisect each other at right angles, what is the length of each side of the quadrilateral?

ANSWER:

RD Sharma Solutions - Chapter 17 - Understanding Shapes-III (Part - 2), Class 8, Maths Class 8 Notes | EduRev

 

Let the given quadrilateral be ABCD in which diagonals AC is equal to 6 cm and BD is equal to 8 cm.

Also, it is given that the diagonals bisect each other at right angle, at point O.

∴ AO = OC = 1/2AC = 3 cm

Also, OB = OD = 1/2BD = 4 cm

In right △AOB:AB2 = OA2 + OB2

⇒ AB= (9 + 16) cm²

⇒ AB2 = 25 cm²

⇒ AB = 5 cmThus, the length of each side of the quadrilateral is 5 cm.

Complete Syllabus of Class 8

Dynamic Test

Content Category

Related Searches

Previous Year Questions with Solutions

,

past year papers

,

Objective type Questions

,

Maths Class 8 Notes | EduRev

,

Exam

,

RD Sharma Solutions - Chapter 17 - Understanding Shapes-III (Part - 2)

,

study material

,

Summary

,

Semester Notes

,

Sample Paper

,

shortcuts and tricks

,

Viva Questions

,

Maths Class 8 Notes | EduRev

,

Class 8

,

Class 8

,

Free

,

Class 8

,

pdf

,

Important questions

,

RD Sharma Solutions - Chapter 17 - Understanding Shapes-III (Part - 2)

,

practice quizzes

,

Extra Questions

,

mock tests for examination

,

video lectures

,

Maths Class 8 Notes | EduRev

,

ppt

,

RD Sharma Solutions - Chapter 17 - Understanding Shapes-III (Part - 2)

,

MCQs

;