RD Sharma Solutions Ex-7.1, Introduction To Euclid's Geometry, Class 9, Maths Class 9 Notes | EduRev

RD Sharma Solutions for Class 9 Mathematics

Created by: Abhishek Kapoor

Class 9 : RD Sharma Solutions Ex-7.1, Introduction To Euclid's Geometry, Class 9, Maths Class 9 Notes | EduRev

The document RD Sharma Solutions Ex-7.1, Introduction To Euclid's Geometry, Class 9, Maths Class 9 Notes | EduRev is a part of the Class 9 Course RD Sharma Solutions for Class 9 Mathematics.
All you need of Class 9 at this link: Class 9

Q. 1. Define the following terms.

(i)  Line segment                                 

(ii) Collinear points                             

(iii) Parallel lines                                

(iv) Intersecting lines

(v) Concurrent lines

(vi) Ray

(vii) Half-line

Solution

(i) Line-segment:

Give two points A and B on a line I. the connected part (segment) of the line with end points at A and B is called the line segment AB.

RD Sharma Solutions Ex-7.1, Introduction To Euclid`s Geometry, Class 9, Maths Class 9 Notes | EduRev

(ii) Collinear points:

Three or more points are said to be collinear if there is a line which contains all of them.

RD Sharma Solutions Ex-7.1, Introduction To Euclid`s Geometry, Class 9, Maths Class 9 Notes | EduRev

(iii) Parallel lines:

Two lines l and m in a plane are said to be parallel lines if they do not intersect each other.

RD Sharma Solutions Ex-7.1, Introduction To Euclid`s Geometry, Class 9, Maths Class 9 Notes | EduRev

(iv) Intersecting lines:

Two lines are intersecting if they have a common point. The common point is called point of intersection.

RD Sharma Solutions Ex-7.1, Introduction To Euclid`s Geometry, Class 9, Maths Class 9 Notes | EduRev

(v) Concurrent lines:

Three or more lines are said to be concurrent if there is a point which lies on all of them.

RD Sharma Solutions Ex-7.1, Introduction To Euclid`s Geometry, Class 9, Maths Class 9 Notes | EduRev

(vi) Ray:

A line in which one end point is fixed and the other part can be extended endlessly.

RD Sharma Solutions Ex-7.1, Introduction To Euclid`s Geometry, Class 9, Maths Class 9 Notes | EduRev

(vii) Half-line:

If A, B. C be the points on a line l, such that A lies between B and C, and we delete the point A from line l, the two parts of l that remain are each called half-line.

RD Sharma Solutions Ex-7.1, Introduction To Euclid`s Geometry, Class 9, Maths Class 9 Notes | EduRev

Q. 2. (i) How many lines can pan through a given point?

(ii) In how many points can two distinct lines at the most intersect?

Solution

(i) Infinitely many

(ii) One

Q. 3. (i) Given two points P and Q. Find how many line segments do they determine.

(ii) Name the line segments determined by the three collinear points P. Q and R.

Solution

(i) One

(ii) PQ, QR, PR

 

Q. 4. Write the truth value (T/F) of each of the following statements:

(i) Two lines intersect in a point.

(ii) Two lines may intersect in two points

(iii) A segment has no length.

(iv) Two distinct points always determine a line.

(v) Every ray has a finite length.

(vi) A ray has one end-point only.

(vii) A segment has one end-point only.

(viii) The ray AB is same as ray BA.

(ix) Only a single line may pass through a given point.

(x) Two lines are coincident if they have only one point in common

Solution

(i) False                                  

(ii) False                                 

(iii) False                                

(iv) True                                 

(v) False 

(vi) True 

(vii) False

(viii) False 

(ix) False 

(x) False                             

Q. 5. In the below figure. Name the following:

RD Sharma Solutions Ex-7.1, Introduction To Euclid`s Geometry, Class 9, Maths Class 9 Notes | EduRev                               

Solution:

(i) Five line segments AB, CD, AC, PQ. DS

(ii) Five rays →PA,→RB,→DC,→QS,→DS

(iii) Four collinear points. C, D, Q, S

(iv) Two pairs of non–intersecting line segments AB and CD, AB and LS.

Q. 6.  Fill in the blanks so as to make the following statements true:

(i) Two distinct points in a plane determine a _____________ line.

(ii) Two distinct ___________ in a plane cannot have more than one point in common.

(iii) Given a line and a point, not on the line, there is one and only _____________ line which passes through the given point and is _______________ to the given line.

(iv) A line separates a plane into _________ parts namely the __________ and the _____ itself.

Solution

(i) Unique

(ii) Lines

(iii) Perpendicular, perpendicular

(iv) Three, two half planes, line.

Complete Syllabus of Class 9

Dynamic Test

Content Category

Related Searches

Free

,

Semester Notes

,

Previous Year Questions with Solutions

,

Maths Class 9 Notes | EduRev

,

past year papers

,

Maths Class 9 Notes | EduRev

,

video lectures

,

mock tests for examination

,

Sample Paper

,

Viva Questions

,

Exam

,

ppt

,

RD Sharma Solutions Ex-7.1

,

Introduction To Euclid's Geometry

,

Important questions

,

shortcuts and tricks

,

RD Sharma Solutions Ex-7.1

,

Maths Class 9 Notes | EduRev

,

study material

,

practice quizzes

,

Class 9

,

Extra Questions

,

Introduction To Euclid's Geometry

,

RD Sharma Solutions Ex-7.1

,

Class 9

,

Introduction To Euclid's Geometry

,

Class 9

,

pdf

,

Objective type Questions

,

MCQs

,

Summary

;