The document RD Sharma Solutions for Class 8 Math Chapter 4 - Cubes and Cube Roots (Part-5) Class 8 Notes | EduRev is a part of the Class 8 Course RD Sharma Solutions for Class 8 Mathematics.

All you need of Class 8 at this link: Class 8

By the cube root table, we have:

1.913

Thus, the answer is 1.913.

By the cube root table, we have:

4.121

**700=70Ã—10700=70Ã—10âˆ´âˆ´ Cube root of 700 will be in the column of against 70. **

**By the cube root table, we have: **

=8.879

Thus, the answer is 8.879.

**7000=70Ã—1007000=70Ã—100**

**By the cube root table, we have: **

** =1.913Ã—10=19.13 **

**1100=11Ã—1001100=11Ã—100**

**By the cube root table, we have: **

** =2.224Ã—4.642=10.323 (Up to three decimal places)11003=113Ã—1003=2.224Ã—4.642=10.323 (Up to three decimal places)**

**Thus, the answer is 10.323. **

**780=78Ã—10780=78Ã—10**

**âˆ´âˆ´ Cube root of 780 would be in the column of against 78. **

**By the cube root table, we have: **

= 9.205

Thus, the answer is 9.205.

**7800=78Ã—1007800=78Ã—100**

By the cube root table, we have:

=4.273Ã—4.642=19.835 (upto three decimal places)

Thus, the answer is 19.835

**1346=2Ã—673â‡’ **

**Also **

**670<673<680â‡’**

**From the cube root table, we have: **

**For the difference (680âˆ’-670), i.e., 10, the difference in the values **

**=8.794âˆ’8.750=0.044=8.794-8.750=0.044**

**âˆ´âˆ´ For the difference of (673âˆ’-670), i.e., 3, the difference in the values **

** Ã—3=0.0132=0.013=0.04410Ã—3=0.0132=0.013 (upto three decimal places) **

** =8.750+0.013=8.7636733=8.750+0.013=8.763**

**Now **

** =1.260Ã—8.763=11.04113463=23Ã—6733=1.260Ã—8.763=11.041 (upto three decimal places) **

**Thus, the answer is 11.041. **

**250=25Ã—100250=25Ã—100**

**âˆ´âˆ´ Cube root of 250 would be in the column of against 25. **

**By the cube root table, we have: **

**Thus, the required cube root is 6.3. **

**5112=23Ã—32Ã—71â‡’ **

**By the cube root table, we have: **

** **

** =2Ã—2.080Ã—4.141=17.22751123=2Ã—93Ã—713=2Ã—2.080Ã—4.141=17.227 (upto three decimal places) **

**Thus, the required cube root is 17.227. **

**9800=98Ã—1009800=98Ã—100**

By cube root table, we have:

=4.610Ã—4.642=21.4098003=983Ã—1003=4.610Ã—4.642=21.40 (upto three decimal places)

Thus, the required cube root is 21.40.

**730<732<740â‡’ **

**From cube root table, we have: **

**For the difference (740âˆ’-730), i.e., 10, the difference in values **

**=9.045âˆ’9.004=0.041=9.045-9.004=0.041**

**âˆ´âˆ´ For the difference of (732âˆ’-730), i.e., 2, the difference in values **

2=0.0082

=9.004+0.008=9.012

**7300<7342<7400â‡’ **

**From the cube root table, we have: **

**For the difference (7400âˆ’-7300), i.e., 100, the difference in values **

**=19.48âˆ’19.39=0.09 **

**âˆ´âˆ´ For the difference of (7342âˆ’-7300), i.e., 42, the difference in the values **

** Ã—42=0.0378=0.037 **

** =19.39+0.037=19.427 **

**133100=1331Ã—100â‡’ **

**By cube root table, we have: **

** =4.6421003=4.642**

** =11Ã—4.642=51.062 **

**37800=23Ã—33Ã—175â‡’ **

**Also **

**170<175<180â‡’ **

**From cube root table, we have: **

**For the difference (180âˆ’-170), i.e., 10, the difference in values **

**=5.646âˆ’5.540=0.106=5.646-5.540=0.106**

**âˆ´âˆ´ For the difference of (175âˆ’-170), i.e., 5, the difference in values **

** Ã—5=0.053=0.10610Ã—5=0.053**

** =5.540+0.053=5.5931753=5.540+0.053=5.593**

**Now **

**37800=6Ã— =6Ã—5.593=33.55837800=6Ã—1753=6Ã—5.593=33.558**

**Thus, the required cube root is 33.558. **

**Now **

**By cube root table, we have: **

** =0.6460.273=31003=34.642=0.646.**

**Thus, the required cube root is 0.646. **

Now

By cube root table, we have:

2.0498.63=863103=4.4142.154=2.049

Thus, the required cube root is 2.049.

Now

By cube root table, we have:

=0.9510.863=8631003=4.4144.642=0.951 (upto three decimal places)

Thus, the required cube root is 0.951.

Now

Also

860<865<870â‡’

From the cube root table, we have:

For the difference (870âˆ’-860), i.e., 10, the difference in values

=9.546âˆ’9.510=0.036=9.546-9.510=0.036

âˆ´âˆ´ For the difference of (865âˆ’-860), i.e., 5, the difference in values

Ã—5=0.018 (upto three decimal places)

9.510+0.018=9.5288653=9.510+0.018=9.528 (upto three decimal places)

From the cube root table, we also have:

2.0538.653=86531003=9.5284.642=2.053 (upto three decimal places)

Thus, the required cube root is 2.053.

**7500<7532<7600â‡’ **

**From the cube root table, we have: **

**For the difference (7600âˆ’-7500), i.e., 100, the difference in values **

**=19.66âˆ’19.57=0.09=19.66-19.57=0.09**

**âˆ´âˆ´ For the difference of (7532âˆ’-7500), i.e., 32, the difference in values **

** Ã—32=0.0288=0.029=0.09100Ã—32=0.0288=0.029 (up to three decimal places) **

** =19.57+0.029=19.59975323=19.57+0.029=19.599 **

**830<833<840â‡’ **

**From the cube root table, we have: **

**For the difference (840âˆ’-830), i.e., 10, the difference in values **

**=9.435âˆ’9.398=0.037=9.435-9.398=0.037**

**âˆ´âˆ´ For the difference (833âˆ’-830), i.e., 3, the difference in values **

** Ã—3=0.0111=0.011=0.03710Ã—3=0.0111=0.011 (upto three decimal places) **

** =9.398+0.011=9.4098333=9.398+0.011=9.409 **

Now

Also

340<342<350â‡’

From the cube root table, we have:

For the difference (350âˆ’-340), i.e., 10, the difference in values

=7.047âˆ’6.980=0.067=7.047-6.980=0.067.

âˆ´âˆ´ For the difference (342âˆ’-340), i.e., 2, the difference in values

Ã—2=0.013=0.06710Ã—2=0.013 (upto three decimal places)

=6.980+0.0134=6.9933423=6.980+0.0134=6.993 (upto three decimal places)

From the cube root table, we also have:

3.246

Thus, the required cube root is 3.246.

**V=a3V=a3, where a = side of the cube **

âˆ´âˆ´ Side of a cube = a=

If the volume of a cube is 275 cm^{3}, the side of the cube will be

We have:

270<275<280â‡’

From the cube root table, we have:

For the difference (280âˆ’-270), i.e., 10, the difference in values

=6.542âˆ’6.463=0.079=6.542-6.463=0.079

âˆ´âˆ´ For the difference (275âˆ’-270), i.e., 5, the difference in values

Ã—5=0.0395 â‰ƒ 0.04=0.07910Ã—5=0.0395 â‰ƒ 0.04 (upto three decimal places)

=6.463+0.04=6.5032753=6.463+0.04=6.503 (upto three decimal places)

Thus, the length of the side of the cube is 6.503 cm.