Rank Correlation - Correlation & Regression, Business Mathematics & Statistics B Com Notes | EduRev

B Com: Rank Correlation - Correlation & Regression, Business Mathematics & Statistics B Com Notes | EduRev

The document Rank Correlation - Correlation & Regression, Business Mathematics & Statistics B Com Notes | EduRev is a part of the B Com Course Business Mathematics and Statistics.
All you need of B Com at this link: B Com

Rank Correlation Rank method for the computation of the coefficient of correlation is based on the rank or the order & not the magnitude of the variable. Accordingly it is more suitable when the variables can be arranged for e.g. in case of intelligence or beauty or any other qualitative phenomenon. The ranks may range from 1 to n.
Edward spearman has provided the following formula —


Where N = Number of pairs of variable X & Y
D = Rank difference

Example 4 : From the data given belows calculate the rank correlation between x & Y


Solution :
 Table :
Computation of Rank Correlation


Rank correlation

This shows there is very high positive correlation between X & Y.

Example 5 : Calculate Rank Correlation from the following data.


Solution : Table : Calculation of Rank correlation


Here m, m2 ... denote the number of times ranks are tied in both the variables, the subscripts & denote the first tie, second tie,...., in both the variables

= 1 – 0.205
= 0.795

Example 6 : Find the coefficient of correlation between price and sales from the following data :


Solution : Let the value of assumed mean for X(AX) be 90
Let the value of assumed mean for Y(Ay) be 700
Table : Calculation of correlation coefficient


Note : As r is a pure number, change of scale does not affect its value. Hence the values are divided by 10 in column 4 to make the calculations simple. The following formula can be applied to all the problems.



Steps.
(i) find out the direction of change of X variable, i.e., as compared with the first value, whether the second value is increasing or decreasing or is constant. If it is increasing put (+) sign; if it is decreasing put (-) sign (minus) and if it is constant put zero. Similarly, as compared to second  value find out whether the third value is increasing, decreasing or constant. Repeat the same process for other values. Denote this column by Dx.
(ii) In the same manner as discussed above find out the direction of change of Y variable and denote this column by Dy.
(iii) Multiply Dx with Dy, and determine the value of c, i.e., the number of positive signs.
(iv) Apply the above formula,  i.e.,
rc = +√+ (2C-n)/n
Note. The significance of + signs, both (inside the under root  and outside the under root) is that we cannot take the under root of minus sign. Therefore, if 2C-n is negative, this negative n value of multiplied with the minus sign inside would make it positive and we can take the under root. But the ultimate result would be negative. If 2C-n  is positive then, of course, we get a positive n value of the coefficient of correlation.
For more help in Concurrent Deviation Method please click the button below to submit your homework assignment.

The document Rank Correlation - Correlation & Regression, Business Mathematics & Statistics B Com Notes | EduRev is a part of the B Com Course Business Mathematics and Statistics.
All you need of B Com at this link: B Com

Related Searches

past year papers

,

Viva Questions

,

Important questions

,

MCQs

,

Business Mathematics & Statistics B Com Notes | EduRev

,

Business Mathematics & Statistics B Com Notes | EduRev

,

mock tests for examination

,

Extra Questions

,

Rank Correlation - Correlation & Regression

,

practice quizzes

,

Previous Year Questions with Solutions

,

Rank Correlation - Correlation & Regression

,

Sample Paper

,

ppt

,

Semester Notes

,

Objective type Questions

,

shortcuts and tricks

,

Exam

,

pdf

,

Summary

,

video lectures

,

Free

,

study material

,

Business Mathematics & Statistics B Com Notes | EduRev

,

Rank Correlation - Correlation & Regression

;