Revision Notes (Part -1) - Geomorphic Processes Notes | Study NCERT Textbooks in Hindi (Class 6 to Class 12) - UPSC

UPSC: Revision Notes (Part -1) - Geomorphic Processes Notes | Study NCERT Textbooks in Hindi (Class 6 to Class 12) - UPSC

The document Revision Notes (Part -1) - Geomorphic Processes Notes | Study NCERT Textbooks in Hindi (Class 6 to Class 12) - UPSC is a part of the UPSC Course NCERT Textbooks in Hindi (Class 6 to Class 12).
All you need of UPSC at this link: UPSC
  • The external forces are known as exogenic forces and the internal forces are known as endogenic forces.
  • The actions of exogenic forces result in wearing down (degradation) of relief/elevations and filling up (aggradation) of basins/ depressions, on the earth’s surface.
  • The phenomenon of wearing down of relief variations of the surface of the earth through erosion is known as gradation.
  • The endogenic forces continuously elevate or build up parts of the earth’s surface and hence the exogenic processes fail to even out the relief variations of the surface of the earth.


  • The endogenic and exogenic forces causing physical stresses and chemical actions on earth materials and bringing about changes in the configuration of the surface of the earth are known as geomorphic processes.
  • Diastrophism and volcanism are  endogenic geomorphic processes.
  • Weathering, mass wasting, erosion and deposition are exogenic geomorphic processes.
  • Any exogenic element of nature (like water, ice, wind, etc.,) capable of acquiring and transporting earth materials can be called a geomorphic agent.
  • When these elements of nature become mobile due to gradients, they remove the materials and transport them over slopes and deposit them at lower level. Geomorphic processes and geomorphic agents especially exogenic, unless stated separately, are one and the same.
  • Gravity besides being a directional force activating all downslope movements of matter also causes stresses on the earth’s materials. Indirect gravitational stresses activate wave and tide induced currents and winds.
  • Without gravity and gradients there would be no mobility and hence no erosion, transportation and deposition are possible. So, gravitational stresses are as important as the other geomorphic processes. Gravity is the force that is keeping us in contact with the surface and it is the force that switches on the movement of all surface material on earth.
  • All the movements either within the earth or on the surface of the earth occur due to gradients— from higher levels to lower levels, from high pressure to low pressure areas etc.


The energy emanating from within the earth is the main force behind endogenic geomorphic processes. This energy is mostly generated by radioactivity, rotational and tidal friction and primordial heat from the origin of the earth. This energy due to geothermal gradients and heat flow from within induces diastrophism and volcanism in the lithosphere. Due to variations in geothermal gradients and heat flow from within, crustal thickness and strength, the action of endogenic forces are not uniform and hence the tectonically controlled original crustal surface is uneven.


  • All processes that move, elevate or build up portions of the earth’s crust come under diastrophism. They include: (i) orogenic processes involving mountain building through severe folding and affecting long and narrow belts of the earth’s crust; (ii) epeirogenic processes involving uplift or warping of large parts of the earth’s crust; (iii) earthquakes involving local relatively minor movements;
  • plate tectonics involving horizontal movements of crustal plates.
  • Orogeny is a mountain building process whereas epeirogeny is continental building process.
  • Through the processes of orogeny, epeirogeny, earthquakes and plate tectonics, there can be faulting and fracturing of the crust. All these processes cause pressure, volume and temperature (PVT) changes which in turn induce metamorphism of rocks.


Volcanism includes the movement of molten rock (magma) onto or toward the earth’s surface and also formation of many intrusive and extrusive volcanic forms.


  • The exogenic processes derive their energy from atmosphere determined by the ultimate energy from the sun and also the gradients created by tectonic factors processes and their respective driving forces.
  • Temperature and precipitation are the two important climatic elements that control various processes.
  • All the exogenic geomorphic processes are covered under a general term, denudation. The word ‘denude’ means to strip off or to uncover. Weathering, mass wasting/movements, erosion and transportation are included in denudation
  • Gravitational force acts upon all earth materials having a sloping surface and tend to produce movement of matter in down slope direction. Force applied per unit area is called stress. Stress is produced in a solid by pushing or pulling. This induces deformation. Forces acting along the faces of earth materials are shear stresses (separating forces). It is this stress that breaks rocks and other earth materials.
  • The shear stresses result in angular displacement or slippage.
  • molecular stresses that may be caused by a number of factors amongst which temperature changes, crystallisation and melting are the most common.
  • Chemical processes normally lead to loosening of bonds between grains, dissolving of soluble minerals or cementing materials. Thus, the basic reason that leads to weathering, mass movements, and erosion is development of stresses in the body of the earth materials.
  • Different types of rocks with differences in their structure offer varying resistances to various geomorphic processes


  • Weathering is action of elements of weather and climate over earth materials. There are a number of processes within weathering which act either individually or together to affect the earth materials in order to reduce them to fragmental state.
  • Weathering is defined as mechanical disintegration and chemical decom position of rocks through the actions of various elements of weather and climate.
  • As very little or no motion of materials takes place in weathering, it is an in-situ or on-site process.
  • Weathering processes are conditioned by many complex geological, climatic, topographic and vegetative factors. Climate is of particular importance. Not only weathering processes differ from climate to climate, but also the depth of the weathering mantle
  • There are three major groups of weathering processes : (i) chemical; (ii) physical or mechanical; (iii) biological weathering processes.

Chemical Weathering Processes

  • A group of weathering processes viz; solution, carbonation, hydration, oxidation and reduction act on the rocks to decompose, dissolve or reduce them to a fine clastic state through chemical reactions by oxygen, surface and/or soil water and other acids.
  • Water and air (oxygen and carbon dioxide) along with heat must be present to speed up all chemical reactions .
  • Solution When something is dissolved in water or acids, the water or acid with dissolved contents is called solution.
  • This process involves removal of solids in solution and depends upon solubility of a mineral in water or weak acids. On coming in contact with water many solids disintegrate and mix up as suspension in water.
  • Soluble rock forming minerals like nitrates, sulphates, and potassium etc. are affected by this process.
  • So, these minerals are easily leached out without leaving any residue in rainy climates and accumulate in dry regions. Minerals like calcium carbonate and calcium magnesium bicarbonate present in limestones are soluble in water containing carbonic acid (formed with the addition of carbon dioxide in water), and are carried away in water as solution.
  • Carbon dioxide produced by decaying organic matter along with soil water greatly aids in this reaction.
  • Common salt (sodium chloride) is also a rock forming mineral and is susceptible to this process of solution.


  • Carbonation is the reaction of carbonate and bicarbonate with minerals and is a common process helping the breaking down of feldspars and carbonate minerals.
  • Carbon dioxide from the atmosphere and soil air is absorbed by water, to form carbonic acid that acts as a weak acid.
  • Calcium carbonates and magnesium carbonates are dissolved in carbonic acid and are removed in a solution without leaving any residue resulting in cave formation.


  • Hydration is the chemical addition of water. Minerals take up water and expand; this expansion causes an increase in the volume of the material itself or rock. Calcium sulphate takes in water and turns to gypsum, which is more unstable than calcium sulphate.
  • This process is reversible and long, continued repetition of this process causes fatigue in the rocks and may lead to their disintegration.

Oxidation and Reduction

  • In weathering, oxidation means a combination of a mineral with oxygen to form oxides or hydroxides.
  • Oxidation occurs where there is ready access to the atmosphere and oxygenated waters. The minerals most commonly involved in this process are iron, manganese, sulphur etc. In the process of oxidation rock breakdown occurs due to the disturbance caused by addition of oxygen. Red colour of iron upon oxidation turns to brown or yellow.
  • When oxidised minerals are placed in an environment where oxygen is absent, reduction takes place. Such conditions exist usually below the water table, in areas of stagnant water and waterlogged ground. Red colour of iron upon reduction turns to greenish or bluish grey.
  • These weathering processes are inter- related. Hydration, carbonation and oxidation go hand in hand and hasten the weathering process

Physical Weathering Processes

Physical or mechanical weathering processes depend on some applied forces. The applied forces could be:
(i) gravitational forces such as over burden pressure, load and shearing  stress;
(ii) expansion forces due to temperature changes, crystal growth or animal activity;
(iii) water pressures controlled by wetting and drying cycles.

  • Many of these forces are applied both at the surface and within different earth materials leading to rock fracture. Most of the physical weathering processes are caused by thermal expansion and pressure release.

Unloading and Expansion

  • Removal of overlying rock load because of continued erosion causes vertical pressure release with the result that the upper layers of the rock expand producing disintegration of rock masses.
  • Fractures will develop roughly parallel to the ground surface. In areas of curved ground surface, arched fractures tend to produce massive sheets or exfoliation slabs of rock. Exfoliation sheets resulting from expansion due to unloading and pressure release may measure hundreds or even thousands of metres in horizontal extent. Large, smooth rounded domes called exfoliation domes .

Temperature Changes and Expansion

  • Various minerals in rocks possess their own limits of expansion and contraction. With rise in temperature, every mineral expands and pushes against its neighbour and as temperature falls, a corresponding contraction takes place.
  • Because of diurnal changes in the temperatures, this internal movement among the mineral grains of the superficial layers of rocks takes place regularly. This process is most effective in dry climates and high elevations where diurnal temperature changes are drastic.

Freezing, Thawing and Frost Wedging

  • Frost weathering occurs due to growth of ice within pores and cracks of rocks during repeated cycles of freezing and melting. This process is most effective at high elevations in mid-latitudes where freezing and melting is often repeated. Glacial areas are subject to frost wedging daily.
  • In this process, the rate of freezing is important. Rapid freezing of water causes its sudden expansion and high pressure. The resulting expansion affects joints, cracks and small inter granular fractures to become wider and wider till the rock breaks apart.

Salt Weathering:-

  • Salts in rocks expand due to thermal action, hydration and crystallisation. Many salts like calcium, sodium, magnesium, potassium and barium have a tendency to expand. Expansion of these salts depends on temperature and their thermal properties. High temperature ranges between 30 and 50oC of surface temperatures in deserts favour such salt expansion.
  • Salt crystals in near-surface pores cause splitting of individual grains within rocks, which eventually fall off. This process of falling off of individual grains may result in granular disintegration or granular foliation cause splitting of individual grains within rocks, which eventually fall off. This process of falling off of individual grains may result in granular disintegration or granular foliation.
  • Salt crystallisation is most effective of all salt-weathering processes
  • With salt crystal growth, chalk breaks down most readily, followed by limestone, sandstone, shale, gneiss and granite etc.


  • Biological weathering is contribution to or removal of minerals and ions from the weathering environment and physical changes due to growth or movement of organisms. Burrowing and wedging by organisms like earthworms, termites, rodents etc., help in exposing the new surfaces to chemical attack and assists in the penetration of moisture and air.
  • Human beings by disturbing vegetation, ploughing and cultivating soils, also help in mixing and creating new contacts between air, water and minerals in the earth materials. Decaying plant and animal matter help in the production of humic, carbonic and other acids which enhance decay and solubility of some elements. Plant roots exert a tremendous pressure on the earth materials mechanically breaking them apart.


Exfoliation- Exfoliation is a result but not a process. Flaking off of more or less curved sheets of shells from over rocks or bedrock results in smooth and rounded surfaces. Exfoliation can occur due to expansion and contraction induced by temperature changes. Exfoliation domes and tors result due to unloading and thermal expansion respectively.


  • Weathering processes are responsible for breaking down the rocks into smaller fragments and preparing the way for formation of not only regolith and soils, but also erosion and mass movements.
  • Biomes and bio- diversity is basically a result of forests (vegetation) and forests depend upon the depth of weathering mantles.
  • Erosion cannot be significant if the rocks are not weathered.
  • That means, weathering aids mass wasting, erosion and reduction of relief and changes in landforms are a consequence of erosion.
  • Weathering of rocks and deposits helps in the enrichment and concentrations of certain valuable ores of iron, manganese, aluminium, copper etc., which are of great importance for the national economy.
  • Weathering is an important process in the formation of soils.
  • When rocks undergo weathering, some materials are removed through chemical or physical leaching by groundwater and thereby the concentration of remaining (valuable) materials increases. Without such a weathering taking place, the concentration of the same valuable material may not be sufficient and economically viable to exploit, process and refine. This is what is called enrichment.
The document Revision Notes (Part -1) - Geomorphic Processes Notes | Study NCERT Textbooks in Hindi (Class 6 to Class 12) - UPSC is a part of the UPSC Course NCERT Textbooks in Hindi (Class 6 to Class 12).
All you need of UPSC at this link: UPSC

Related Searches





Objective type Questions


Previous Year Questions with Solutions


Viva Questions








Sample Paper


Extra Questions


Revision Notes (Part -1) - Geomorphic Processes Notes | Study NCERT Textbooks in Hindi (Class 6 to Class 12) - UPSC


video lectures


Revision Notes (Part -1) - Geomorphic Processes Notes | Study NCERT Textbooks in Hindi (Class 6 to Class 12) - UPSC


Revision Notes (Part -1) - Geomorphic Processes Notes | Study NCERT Textbooks in Hindi (Class 6 to Class 12) - UPSC


shortcuts and tricks


Important questions


past year papers


practice quizzes


mock tests for examination


study material


Semester Notes