Notes | EduRev

JEE Main Mock Test Series 2020 & Previous Year Papers

JEE : Notes | EduRev

The document Notes | EduRev is a part of the JEE Course JEE Main Mock Test Series 2020 & Previous Year Papers.
All you need of JEE at this link: JEE
  • If x, y ∈ R and n ∈ N, then the binomial theorem states that
    (x+y)n = nC0xn + nC1 xn-1y+ nC2 xn-2 y+…… … .. + nCrxn-r y+ ….. + nCnyn
    which can be written as ΣnCrxn-ryr. This is also called as the binomial theorem formula which is used for solving many problems.
  • Some chief properties of binomial expansion of the term (x+y)n:
    1. The number of terms in the expansion is (n+1) i.e. it is one more than the index.
    2. The sum of indices of x and y is always n.
    3. The binomial coefficients of the terms which are equidistant from the starting and the end are always equal. The simple reason behind this is
    C(n, r) = C(n, n-r) which gives C(n, n) C(n, 1) = C(n, n-1) C(n, 2) = C(n, n-2).
  • Such an expansion always follows a simple rule which is:
    1. The subscript of C i.e. the lower suffix of C is always equal to the index of y.
    2. Index of x = n – (lower suffix of C).
  • The (r +1)th term in the expansion of expression (x+y)n is called the general term and is given by Tr+1 = nCrxn-ryr
  • The term independent of x is obviously without x and is that value of r for which the exponent of x is zero.
  • The middle term of the binomial coefficient depends on the value of n. There can be two different cases according to whether n is even or n is odd.
    1. If n is even, then the total number of terms are odd and in that case there is a single middle term which is (n/2 +1)th and is given by nCn/2 an/2 xn/2.
    2. On the other hand, if n is odd, the total number of terms is even and then there are two middle terms [(n+1)/2]th and [(n+3)/2]th which are equal to nC(n-1)/2 a(n+1)/2 x(n-1)/2 and nC(n+1)/2 a(n-1)/2 x(n+1)/2
  • The binomial coefficient of the middle term is the greatest binomial coefficient of the expansion.
  • Some of the standard binomial theorem formulas which should be memorized are listed below:
    1. C+ C+ C2 + ….. + Cn= 2n
    2. C+ C2 + C4 + ….. = C1 + C3 + C5 + ……….= 2n-1
    3. C02 + C1+ C22 + ….. + Cn2 = 2nC= (2n!)/ n!n!
    4. C0Cr + C1Cr+1 + C2Cr+2+ ….. + Cn-rCn=(2n!)/ (n+r)!(n-r)!
    5. Another result that is applied in binomial theorem problems is nC+ nCr-1 = n+1Cr
    6. We can also replace mC0 by m+1C0 because numerical value of both is same i.e. 1. Similarly we can replace mCm by m+1Cm+1.
    7. Note that (2n!) = 2n. n! [1.3.5. … (2n-1)]
  • In order to compute numerically greatest term in a binomial expansion of (1+x)n, find Tr+1 / Tr= (n – r + 1)x/r. Then put the absolute value of x and find the value of r which is consistent with the inequality Tr+1 / Tr> 1.
  • If the index n is other than a positive integer such as a negative integer or fraction, then the number of terms in the expansion of (1+x)is infinite.
  • The expansions in ascending powers of x are valid only if x is small. If x is large, i.e. |x| > 1 then it is convenient to expand in powers of 1/x which is then small.
  • The binomial expansion for the nth degree polynomial is given by:
     Notes | EduRev
  • Following expansions should be remembered for |x| < 1:
    1. (1+x)-1 = 1 – x + x– x3 + x4 - ….. ∞
    2. (1-x)-1 = 1 + x + x2+ x+ x4+ ….. ∞
    3. (1+x)-2 = 1 – 2x + 3x– 4x3 + 5x4 - ….. ∞
    4. (1-x)-2 = 1 +2x + 3x2+4x+ 5x4+ ….. ∞
Offer running on EduRev: Apply code STAYHOME200 to get INR 200 off on our premium plan EduRev Infinity!

Complete Syllabus of JEE

JEE

Dynamic Test

Content Category

Related Searches

Sample Paper

,

study material

,

shortcuts and tricks

,

Exam

,

practice quizzes

,

past year papers

,

Notes | EduRev

,

Important questions

,

ppt

,

MCQs

,

Notes | EduRev

,

Objective type Questions

,

video lectures

,

Notes | EduRev

,

Summary

,

Semester Notes

,

Extra Questions

,

pdf

,

Previous Year Questions with Solutions

,

Free

,

mock tests for examination

,

Viva Questions

;