The document Notes | EduRev is a part of the JEE Course JEE Main Mock Test Series 2020 & Previous Year Papers.

All you need of JEE at this link: JEE

- A function f(x) is said to be periodic if there exists some T > 0 such that f(x+T) = f(x) for all x in the domain of f(x).
- In case, the T in the definition of period of f(x) is the smallest positive real number then this â€˜Tâ€™ is called the period of f(x).
**Periods of various trigonometric functions are listed below:**

1) sin x has period 2Ï€

2) cos x has period 2Ï€

3) tan x has period Ï€

4) sin(ax+b), cos (ax+b), sec(ax+b), cosec (ax+b) all are of period 2Ï€/a

5) tan (ax+b) and cot (ax+b) have Ï€/a as their period

6) |sin (ax+b)|, |cos (ax+b)|, |sec(ax+b)|, |cosec (ax+b)| all are of period Ï€/a

7) |tan (ax+b)| and |cot (ax+b)| have Ï€/2a as their period**Sum and Difference Formulae of Trigonometric Ratios**

1) sin(a + ÃŸ) = sin(a)cos(ÃŸ) + cos(a)sin(ÃŸ)

2) sin(a â€“ ÃŸ) = sin(a)cos(ÃŸ) â€“ cos(a)sin(ÃŸ)

3) cos(a + ÃŸ) = cos(a)cos(ÃŸ) â€“ sin(a)sin(ÃŸ)

4) cos(a â€“ ÃŸ) = cos(a)cos(ÃŸ) + sin(a)sin(ÃŸ)

5) tan(a + ÃŸ) = [tan(a) + tan (ÃŸ)]/ [1 - tan(a)tan (ÃŸ)]

6)tan(a - ÃŸ) = [tan(a) - tan (ÃŸ)]/ [1 + tan (a) tan (ÃŸ)]

7) tan (Ï€/4 + Î¸) = (1 + tan Î¸)/(1 - tan Î¸)

8) tan (Ï€/4 - Î¸) = (1 - tan Î¸)/(1 + tan Î¸)

9) cot (a + ÃŸ) = [cot(a) . cot (ÃŸ) - 1]/ [cot (a) +cot (ÃŸ)]

10) cot (a - ÃŸ) = [cot(a) . cot (ÃŸ) + 1]/ [cot (ÃŸ) - cot (a)]**Double or Triple -Angle Identities**

1) sin 2x = 2sin x cos x

2) cos2x = cos^{2}x â€“ sin^{2}x = 1 â€“ 2sin^{2}x = 2cos^{2}x â€“ 1

3) tan 2x = 2 tan x / (1-tan 2x)

4) sin 3x = 3 sin x â€“ 4 sin^{3}x

5) cos3x = 4 cos^{3}x â€“ 3 cosx

6) tan 3x = (3 tan x - tan^{3}x) / (1- 3tan^{2}x)**For angles A, B and C, we have**

1) sin (A + B +C) = sinAcosBcosC + cosAsinBcosC + cosAcosBsinC - sinAsinBsinC

2) cos (A + B +C) = cosAcosBcosC- cosAsinBsinC - sinAcosBsinC - sinAsinBcosC

3) tan (A + B +C) = [tan A + tan B + tan C â€“tan A tan B tan C]/ [1- tan Atan B - tan B tan C â€“tan A tan C

4) cot (A + B +C) = [cot A cot B cot C â€“ cotA - cot B - cot C]/ [cot A cot B + cot Bcot C + cot A cotCâ€“1]**List of some other trigonometric formulas:**

1) 2sinAcosB = sin(A + B) + sin (A - B)

2) 2cosAsinB = sin(A + B) - sin (A - B)

3) 2cosAcosB = cos(A + B) + cos(A - B)

4) 2sinAsinB = cos(A - B) - cos (A + B)

5) sin A + sin B = 2 sin [(A+B)/2] cos [(A-B)/2]

6) sin A - sin B = 2 sin [(A-B)/2] cos [(A+B)/2]

7) cosA + cos B = 2 cos [(A+B)/2] cos [(A-B)/2]

8) cosA - cos B = 2 sin [(A+B)/2] sin [(B-A)/2]

9) tanA Â± tanB = sin (A Â± B)/ cos A cos B

10)cot A Â± cot B = sin (B Â± A)/ sin A sin B**Method of solving a trigonometric equation:**

1) If possible, reduce the equation in terms of any one variable, preferably x. Then solve the equation as you used to in case of a single variable.

2) Try to derive the linear/algebraic simultaneous equations from the given trigonometric equations and solve them as algebraic simultaneous equations.

3) At times, you might be required to make certain substitutions. It would be beneficial when the system has only two trigonometric functions.**Some results which are useful for solving trigonometric equations:**

1) sin Î¸ = sina and cosÎ¸ = cosa â‡’ Î¸ = 2nÏ€ + a

2) sin Î¸ = 0 â‡’ Î¸ = nÏ€

3) cosÎ¸ = 0 â‡’ Î¸ = (2n + 1)Ï€/2

4) tan Î¸ = 0 â‡’ Î¸ = nÏ€

5) sinÎ¸ = sinaâ‡’ Î¸ = nÏ€ + (-1)^{n}a where a âˆˆ [â€“Ï€/2, Ï€/2]

6) cosÎ¸= cos a â‡’ Î¸ = 2nÏ€ Â± a, where a âˆˆ[0,Ï€]

7) tanÎ¸ = tanaâ‡’ Î¸ = nÏ€+ a, where a âˆˆ[â€“Ï€/2, Ï€/2]

8) sinÎ¸ = 1 â‡’ Î¸= (4n + 1)Ï€/2

9) sin Î¸ = -1 â‡’ Î¸ = (4n - 1) Ï€ /2

10) sin Î¸ = -1 â‡’ Î¸ = (2n +1) Ï€ /2

11) |sinÎ¸| = 1â‡’ Î¸ =2nÏ€

12) cosÎ¸ = 1 â‡’ Î¸ =(2n + 1)

13) |cosÎ¸| = 1â‡’ Î¸ =nÏ€

Offer running on EduRev: __Apply code STAYHOME200__ to get INR 200 off on our premium plan EduRev Infinity!

3 videos|174 docs|149 tests

- Solved Examples - Trigonometric Functions
- Doc | 1 pages
- Revision Notes - Trigonometric Functions
- Doc | 3 pages
- Solved Examples - Circles Connected with Triangles
- Doc | 2 pages
- Revision Notes - Circles Connected with Triangles
- Doc | 2 pages