Page 1
mebÙegòeâ mveelekeâ mlejerÙe hejer#ee, 2018
(Tier-II)
ieefCele (MATH)
JÙeeKÙee meefnle nue ØeMve he$e
Exam Date : 17-2-2018] [Time : 10 AM to 12 PM
1. What is the unit digit of the sum of first 111
whole numbers?
ØeLece 111 hetCe& mebKÙeeDeeW kesâ Ùeesie keâe FkeâeF& Debkeâ keäÙee
nw?
(a) 4 (b) 6
(c) 5 (d) 0
2. How many 100 digit positive number are
there?
100 DebkeâeW keâer efkeâleveer Oeveelcekeâ mebKÙeeSB nQ?
(a) 9 × 10
99
(b) 9 × 10
100
(c) 10100 (d) 11 × 10
98
3. What is the value of
5.6 0.36 0.42 3.2
?
0.8 2.1
× + ×
×
5.6 0.36 0.42 3.2
0.8 2.1
× + ×
×
keâe ceeve keäÙee nw?
(a) 2 (b) 1
(c) 3 (d) 3/2
4. What is the value of
–
– – –
3 3 3
2 2 2
(1.2) (0.8) (0.7) 2.016
?
(1.35) (1.2) (0.8) (0.7) 0.96 0.84 0.56
+ +
? ? + +
? ?
–
– – –
3 3 3
2 2 2
(1.2) (0.8) (0.7) 2.016
?
(1.35) (1.2) (0.8) (0.7) 0.96 0.84 0.56
+ +
? ? + +
? ?
keâe ceeve keäÙee nw?
(a) 1/4 (b) 1/2
(c) 1 (d) 2
5. What is the unit digit of
(217)
413
×(819)
547
×(414)
624
×(342)
812
?
(217)
413
×(819)
547
×(414)
624
×(342)
812
keâe FkeâeF& Debkeâ
keäÙee nw?
(a) 2 (b) 4
(c) 6 (d) 8
6. What is the value of
1 1
S
1 3 5 1 4
= + +
× × ×
1 1 1 1
...
3 5 7 4 7 5 7 9 7 10
+ + + +
× × × × × ×
upto 20
terms, then what is the value of S?
1 1 1 1
S
1 3 5 1 4 3 5 7 4 7
= + + + +
× × × × × ×
1 1
...
5 7 9 7 10
+ +
× × ×
20 heoeW lekeâ nQ, lees S keâe ceeve
keäÙee nw?
(a) 6179/15275 (b) 6070/14973
(c) 7191/15174 (d) 5183/16423
7. Which of the following is TRUE?
efvecveefueefKele ceW mes keâewve-mee melÙe nw?
I.
3 4
1 1 1
12 29 5
> >
II.
3 4
1 1 1
29 12 5
> >
III.
3 4
1 1 1
5 12 29
> >
IV.
3 4
1 1 1
5 29 12
> >
(a) Only I / kesâJeue I
(b) Only II / kesâJeue II
(c) Only III / kesâJeue III
(d) Only IV / kesâJeue IV
8. N is the largest two digit number, which when
divided by 3, 4 and 6 leaves the remainder 1, 2
and 4 respectively. What is the remainder
when N is divided by 5?
oes DebkeâeW keâer Skeâ meyemes yeÌ[er mebKÙee N nw, efpemes peye 3,
4 leLee 6 mes efJeYeeefpele efkeâÙee peelee nw lees Mes<eHeâue
›eâceMe: 1, 2 leLee 4 Deelee nw~ N keâes 5 mes efJeYeeefpele
keâjves hej Mes<eHeâue keäÙee nw?
(a) 4 (b) 2
(c) 0 (d) 1
9. Which of the following is TRUE?
efvecveefueefKele ceW mes keâewve-mee melÙe nw?
I.
3 4
11 7 45 > >
II.
3 4
7 11 45 > >
III.
3 4
7 45 11 > >
IV.
3 4
45 7 11 > >
Page 2
mebÙegòeâ mveelekeâ mlejerÙe hejer#ee, 2018
(Tier-II)
ieefCele (MATH)
JÙeeKÙee meefnle nue ØeMve he$e
Exam Date : 17-2-2018] [Time : 10 AM to 12 PM
1. What is the unit digit of the sum of first 111
whole numbers?
ØeLece 111 hetCe& mebKÙeeDeeW kesâ Ùeesie keâe FkeâeF& Debkeâ keäÙee
nw?
(a) 4 (b) 6
(c) 5 (d) 0
2. How many 100 digit positive number are
there?
100 DebkeâeW keâer efkeâleveer Oeveelcekeâ mebKÙeeSB nQ?
(a) 9 × 10
99
(b) 9 × 10
100
(c) 10100 (d) 11 × 10
98
3. What is the value of
5.6 0.36 0.42 3.2
?
0.8 2.1
× + ×
×
5.6 0.36 0.42 3.2
0.8 2.1
× + ×
×
keâe ceeve keäÙee nw?
(a) 2 (b) 1
(c) 3 (d) 3/2
4. What is the value of
–
– – –
3 3 3
2 2 2
(1.2) (0.8) (0.7) 2.016
?
(1.35) (1.2) (0.8) (0.7) 0.96 0.84 0.56
+ +
? ? + +
? ?
–
– – –
3 3 3
2 2 2
(1.2) (0.8) (0.7) 2.016
?
(1.35) (1.2) (0.8) (0.7) 0.96 0.84 0.56
+ +
? ? + +
? ?
keâe ceeve keäÙee nw?
(a) 1/4 (b) 1/2
(c) 1 (d) 2
5. What is the unit digit of
(217)
413
×(819)
547
×(414)
624
×(342)
812
?
(217)
413
×(819)
547
×(414)
624
×(342)
812
keâe FkeâeF& Debkeâ
keäÙee nw?
(a) 2 (b) 4
(c) 6 (d) 8
6. What is the value of
1 1
S
1 3 5 1 4
= + +
× × ×
1 1 1 1
...
3 5 7 4 7 5 7 9 7 10
+ + + +
× × × × × ×
upto 20
terms, then what is the value of S?
1 1 1 1
S
1 3 5 1 4 3 5 7 4 7
= + + + +
× × × × × ×
1 1
...
5 7 9 7 10
+ +
× × ×
20 heoeW lekeâ nQ, lees S keâe ceeve
keäÙee nw?
(a) 6179/15275 (b) 6070/14973
(c) 7191/15174 (d) 5183/16423
7. Which of the following is TRUE?
efvecveefueefKele ceW mes keâewve-mee melÙe nw?
I.
3 4
1 1 1
12 29 5
> >
II.
3 4
1 1 1
29 12 5
> >
III.
3 4
1 1 1
5 12 29
> >
IV.
3 4
1 1 1
5 29 12
> >
(a) Only I / kesâJeue I
(b) Only II / kesâJeue II
(c) Only III / kesâJeue III
(d) Only IV / kesâJeue IV
8. N is the largest two digit number, which when
divided by 3, 4 and 6 leaves the remainder 1, 2
and 4 respectively. What is the remainder
when N is divided by 5?
oes DebkeâeW keâer Skeâ meyemes yeÌ[er mebKÙee N nw, efpemes peye 3,
4 leLee 6 mes efJeYeeefpele efkeâÙee peelee nw lees Mes<eHeâue
›eâceMe: 1, 2 leLee 4 Deelee nw~ N keâes 5 mes efJeYeeefpele
keâjves hej Mes<eHeâue keäÙee nw?
(a) 4 (b) 2
(c) 0 (d) 1
9. Which of the following is TRUE?
efvecveefueefKele ceW mes keâewve-mee melÙe nw?
I.
3 4
11 7 45 > >
II.
3 4
7 11 45 > >
III.
3 4
7 45 11 > >
IV.
3 4
45 7 11 > >
(a) Only I / kesâJeue I
(b) Only II / kesâJeue II
(c) Only III / kesâJeue III
(d) Only IV / kesâJeue IV
10. A and B are positive integers. If A + B + AB =
65, then what is the difference between A and B
(A, B = 15)?
A leLee B Oeveelcekeâ hetCeeËkeâ nw~ Ùeefo A+B+AB = 65 nw,
lees A leLee B kesâ ceOÙe Deblej keäÙee nw (A, B = 15)?
(a) 3 (b) 4
(c) 5 (d) 6
11. What is the value of 14
3
+ 16
3
+ 18
3
+ .... + 30
3
?
14
3
+ 16
3
+ 18
3
+ ....... + 30
3
keâe ceeve keäÙee nw?
(a) 134576 (b) 120212
(c) 115624 (d) 111672
12. What is the value of
4600 540 1280 250 36 ? + + + +
4600 540 1280 250 36 ? + + + + keâe ceeve
keäÙee nw?
(a) 69 (b) 68
(c) 70 (d) 72
13. If x + y + z = 0, then what is the value of
(3y
2
+x
2
+z
2
)/(2y
2
–xz)?
Ùeefo x + y + z = 0 nes, lees (3y
2
+ x
2
+ z
2
)/(2y
2
–xz)
keâe ceeve keäÙee nw?
(a) 2 (b) 1
(c) 3/2 (d) 5/3
14. If P = 7+4v3 and PQ = 1, then what is the value
of 1/p
2
+ 1/Q
2
?
Ùeefo P = 7+4v3 leLee PQ = 1 nw, lees 1/p
2
+ 1/Q
2
keâe
ceeve keäÙee nw?
(a) 196 (b) 194
(c) 206 (d) 182
15. If a
3
+3a
2
+9a = 1, then what is the value of a
3
+
(3/a)?
Ùeefo a
3
+3a
2
+9a = 1 nes, lees a
3
+ (3/a) keâe ceeve keäÙee
nw?
(a) 31 (b) 26
(c) 28 (d) 24
16. x, y and z are real numbers. If x
3
+y
3
+z
3
= 13, x
+ y + z = 1 and xyz = 1, then what is the value
of xy + yz + zx?
x, y leLee z JeemleefJekeâ mebKÙeeSB nQ~ Ùeefo x
3
+y
3
+z
3
=
13, x + y + z = 1 leLee xyz = 1 nw, lees xy + yz + zx
keâe ceeve keäÙee nw?
(a) – 1 (b) 1
(c) 3 (d) – 3
17. If (a + b)/c = 6/5 and (b + c)/a = 9/2, then what
is the value of (a + c)/b?
Ùeefo (a + b)/c = 6/5 Deewj (b + c)/a = 9/2 nw, lees (a +
c)/b keâe ceeve keäÙee nw?
(a) 9/5 (b) 11/7
(c) 7/11 (d) 7/4
18. If x
3
+ y
3
+ z
3
= 3(1+xyz), P = y + z – x, Q = z +
x –y and R = x + y – z, then what is the value of
p
3
+Q
3
+R
3
–3PQR?
Ùeefo x
3
+ y
3
+ z
3
= 3(1+xyz), P = y + z – x, Q = z
+ x –y Deewj R = x + y – z, nw, lees p
3
+Q
3
+R
3
–3PQR
keâe ceeve keäÙee nw?
(a) 9 (b) 8
(c) 12 (d) 6
19. If x
1
x
2
x
3
= 4(4+x
1
+x
2
+x
3
), then what is the value
of [1/(2+x
1
)] + [1/(2+x
2
)] + [1/(2+x
3
)]?
Ùeefo x
1
x
2
x
3
= 4(4+x
1
+x
2
+x
3
), nes, lees [1/(2+x
1
)] +
[1/(2+x
2
)] + [1/(2+x
3
)] keâe ceeve keäÙee nw?
(a) 1 (b) 1/2
(c) 2 (d) 1/3
20. If a and ß are the roots of equation x
2
–x+1= 0,
then which equation will have roots a
3
and ß
3
?
Ùeefo a leLee ß meceerkeâjCe x
2
–x+1=0 kesâ cetue nQ, lees
efkeâme meceerkeâjCe kesâ cetue a
3
leLee ß
3
neWies?
(a) x
2
+ 2x + 1 = 0
(b) x
2
– 2x – 1 = 0
(c) x
2
+ 3x – 1 = 0
(d) x
2
– 3x + 1 = 0
21. If 3x + 5y + 7z = 49 and 9x + 8y + 21z = 126,
then what is the value of y?
Ùeefo 3x + 5y + 7z = 49 leLee 9x + 8y + 21z = 126,
nw, lees y keâe ceeve keäÙee nw?
(a) 4 (b) 2
(c) 3 (d) 5
22. Cost of 4 pens, 6 note books and 9 files is Rs.
305. Cost of 3 pens, 4 notebooks and 2 files is
Rs. 145. What is the cost (in Rs) of 5 pens, 8
notebooks and 16 files?
4 keâuece, 6 veesšyegkeâ leLee 9 HeâeFue keâe cetuÙe 305 ®0
nw~ 3 keâuece, 4 veesšyegkeâ leLee 2 HeâeFue keâe cetuÙe 145
®0 nw~ 5 keâuece, 8 veesšyegkeâ leLee 16 HeâeFue keâe cetuÙe
(®0 ceW) keäÙee nw?
(a) 415
(b) 465
(c) 440
(d) Cannot be determined / %eele veneR efkeâÙee pee mekeâlee
Page 3
mebÙegòeâ mveelekeâ mlejerÙe hejer#ee, 2018
(Tier-II)
ieefCele (MATH)
JÙeeKÙee meefnle nue ØeMve he$e
Exam Date : 17-2-2018] [Time : 10 AM to 12 PM
1. What is the unit digit of the sum of first 111
whole numbers?
ØeLece 111 hetCe& mebKÙeeDeeW kesâ Ùeesie keâe FkeâeF& Debkeâ keäÙee
nw?
(a) 4 (b) 6
(c) 5 (d) 0
2. How many 100 digit positive number are
there?
100 DebkeâeW keâer efkeâleveer Oeveelcekeâ mebKÙeeSB nQ?
(a) 9 × 10
99
(b) 9 × 10
100
(c) 10100 (d) 11 × 10
98
3. What is the value of
5.6 0.36 0.42 3.2
?
0.8 2.1
× + ×
×
5.6 0.36 0.42 3.2
0.8 2.1
× + ×
×
keâe ceeve keäÙee nw?
(a) 2 (b) 1
(c) 3 (d) 3/2
4. What is the value of
–
– – –
3 3 3
2 2 2
(1.2) (0.8) (0.7) 2.016
?
(1.35) (1.2) (0.8) (0.7) 0.96 0.84 0.56
+ +
? ? + +
? ?
–
– – –
3 3 3
2 2 2
(1.2) (0.8) (0.7) 2.016
?
(1.35) (1.2) (0.8) (0.7) 0.96 0.84 0.56
+ +
? ? + +
? ?
keâe ceeve keäÙee nw?
(a) 1/4 (b) 1/2
(c) 1 (d) 2
5. What is the unit digit of
(217)
413
×(819)
547
×(414)
624
×(342)
812
?
(217)
413
×(819)
547
×(414)
624
×(342)
812
keâe FkeâeF& Debkeâ
keäÙee nw?
(a) 2 (b) 4
(c) 6 (d) 8
6. What is the value of
1 1
S
1 3 5 1 4
= + +
× × ×
1 1 1 1
...
3 5 7 4 7 5 7 9 7 10
+ + + +
× × × × × ×
upto 20
terms, then what is the value of S?
1 1 1 1
S
1 3 5 1 4 3 5 7 4 7
= + + + +
× × × × × ×
1 1
...
5 7 9 7 10
+ +
× × ×
20 heoeW lekeâ nQ, lees S keâe ceeve
keäÙee nw?
(a) 6179/15275 (b) 6070/14973
(c) 7191/15174 (d) 5183/16423
7. Which of the following is TRUE?
efvecveefueefKele ceW mes keâewve-mee melÙe nw?
I.
3 4
1 1 1
12 29 5
> >
II.
3 4
1 1 1
29 12 5
> >
III.
3 4
1 1 1
5 12 29
> >
IV.
3 4
1 1 1
5 29 12
> >
(a) Only I / kesâJeue I
(b) Only II / kesâJeue II
(c) Only III / kesâJeue III
(d) Only IV / kesâJeue IV
8. N is the largest two digit number, which when
divided by 3, 4 and 6 leaves the remainder 1, 2
and 4 respectively. What is the remainder
when N is divided by 5?
oes DebkeâeW keâer Skeâ meyemes yeÌ[er mebKÙee N nw, efpemes peye 3,
4 leLee 6 mes efJeYeeefpele efkeâÙee peelee nw lees Mes<eHeâue
›eâceMe: 1, 2 leLee 4 Deelee nw~ N keâes 5 mes efJeYeeefpele
keâjves hej Mes<eHeâue keäÙee nw?
(a) 4 (b) 2
(c) 0 (d) 1
9. Which of the following is TRUE?
efvecveefueefKele ceW mes keâewve-mee melÙe nw?
I.
3 4
11 7 45 > >
II.
3 4
7 11 45 > >
III.
3 4
7 45 11 > >
IV.
3 4
45 7 11 > >
(a) Only I / kesâJeue I
(b) Only II / kesâJeue II
(c) Only III / kesâJeue III
(d) Only IV / kesâJeue IV
10. A and B are positive integers. If A + B + AB =
65, then what is the difference between A and B
(A, B = 15)?
A leLee B Oeveelcekeâ hetCeeËkeâ nw~ Ùeefo A+B+AB = 65 nw,
lees A leLee B kesâ ceOÙe Deblej keäÙee nw (A, B = 15)?
(a) 3 (b) 4
(c) 5 (d) 6
11. What is the value of 14
3
+ 16
3
+ 18
3
+ .... + 30
3
?
14
3
+ 16
3
+ 18
3
+ ....... + 30
3
keâe ceeve keäÙee nw?
(a) 134576 (b) 120212
(c) 115624 (d) 111672
12. What is the value of
4600 540 1280 250 36 ? + + + +
4600 540 1280 250 36 ? + + + + keâe ceeve
keäÙee nw?
(a) 69 (b) 68
(c) 70 (d) 72
13. If x + y + z = 0, then what is the value of
(3y
2
+x
2
+z
2
)/(2y
2
–xz)?
Ùeefo x + y + z = 0 nes, lees (3y
2
+ x
2
+ z
2
)/(2y
2
–xz)
keâe ceeve keäÙee nw?
(a) 2 (b) 1
(c) 3/2 (d) 5/3
14. If P = 7+4v3 and PQ = 1, then what is the value
of 1/p
2
+ 1/Q
2
?
Ùeefo P = 7+4v3 leLee PQ = 1 nw, lees 1/p
2
+ 1/Q
2
keâe
ceeve keäÙee nw?
(a) 196 (b) 194
(c) 206 (d) 182
15. If a
3
+3a
2
+9a = 1, then what is the value of a
3
+
(3/a)?
Ùeefo a
3
+3a
2
+9a = 1 nes, lees a
3
+ (3/a) keâe ceeve keäÙee
nw?
(a) 31 (b) 26
(c) 28 (d) 24
16. x, y and z are real numbers. If x
3
+y
3
+z
3
= 13, x
+ y + z = 1 and xyz = 1, then what is the value
of xy + yz + zx?
x, y leLee z JeemleefJekeâ mebKÙeeSB nQ~ Ùeefo x
3
+y
3
+z
3
=
13, x + y + z = 1 leLee xyz = 1 nw, lees xy + yz + zx
keâe ceeve keäÙee nw?
(a) – 1 (b) 1
(c) 3 (d) – 3
17. If (a + b)/c = 6/5 and (b + c)/a = 9/2, then what
is the value of (a + c)/b?
Ùeefo (a + b)/c = 6/5 Deewj (b + c)/a = 9/2 nw, lees (a +
c)/b keâe ceeve keäÙee nw?
(a) 9/5 (b) 11/7
(c) 7/11 (d) 7/4
18. If x
3
+ y
3
+ z
3
= 3(1+xyz), P = y + z – x, Q = z +
x –y and R = x + y – z, then what is the value of
p
3
+Q
3
+R
3
–3PQR?
Ùeefo x
3
+ y
3
+ z
3
= 3(1+xyz), P = y + z – x, Q = z
+ x –y Deewj R = x + y – z, nw, lees p
3
+Q
3
+R
3
–3PQR
keâe ceeve keäÙee nw?
(a) 9 (b) 8
(c) 12 (d) 6
19. If x
1
x
2
x
3
= 4(4+x
1
+x
2
+x
3
), then what is the value
of [1/(2+x
1
)] + [1/(2+x
2
)] + [1/(2+x
3
)]?
Ùeefo x
1
x
2
x
3
= 4(4+x
1
+x
2
+x
3
), nes, lees [1/(2+x
1
)] +
[1/(2+x
2
)] + [1/(2+x
3
)] keâe ceeve keäÙee nw?
(a) 1 (b) 1/2
(c) 2 (d) 1/3
20. If a and ß are the roots of equation x
2
–x+1= 0,
then which equation will have roots a
3
and ß
3
?
Ùeefo a leLee ß meceerkeâjCe x
2
–x+1=0 kesâ cetue nQ, lees
efkeâme meceerkeâjCe kesâ cetue a
3
leLee ß
3
neWies?
(a) x
2
+ 2x + 1 = 0
(b) x
2
– 2x – 1 = 0
(c) x
2
+ 3x – 1 = 0
(d) x
2
– 3x + 1 = 0
21. If 3x + 5y + 7z = 49 and 9x + 8y + 21z = 126,
then what is the value of y?
Ùeefo 3x + 5y + 7z = 49 leLee 9x + 8y + 21z = 126,
nw, lees y keâe ceeve keäÙee nw?
(a) 4 (b) 2
(c) 3 (d) 5
22. Cost of 4 pens, 6 note books and 9 files is Rs.
305. Cost of 3 pens, 4 notebooks and 2 files is
Rs. 145. What is the cost (in Rs) of 5 pens, 8
notebooks and 16 files?
4 keâuece, 6 veesšyegkeâ leLee 9 HeâeFue keâe cetuÙe 305 ®0
nw~ 3 keâuece, 4 veesšyegkeâ leLee 2 HeâeFue keâe cetuÙe 145
®0 nw~ 5 keâuece, 8 veesšyegkeâ leLee 16 HeâeFue keâe cetuÙe
(®0 ceW) keäÙee nw?
(a) 415
(b) 465
(c) 440
(d) Cannot be determined / %eele veneR efkeâÙee pee mekeâlee
23. ABC is a right angled triangle. ?BAC = 90
0
and ?ACB = 60
0
. What is the ratio of the
circum radius of the triangle to the side AB?
ABC Skeâ mecekeâesCe ef$eYegpe nw~ ?BAC = 90
0
leLee
?ACB = 60
0
nw~ ef$eYegpe keâer heefjef$epÙee keâe Yegpee AB
mes keäÙee Devegheele nw?
(a) 1 : 2 (b) 1 : v3
(c) 2 : v3 (d) 2 : 3
24. In the given figure, ABCD is a square whose
side is 4 cm. P is a point on the side AD. What
is the minimum value (in cm) of BP + CP?
oer ieF& Deeke=âefle ceW, ABCD Skeâ Jeie& nw efpemekeâer Yegpee 4
mes.ceer. nw~ Yegpee AD hej P Skeâ efyevog nw~ BP + CP keâe
vÙetvelece ceeve (mes.ceer. ceW) keäÙee nw?
(a) 4v5 (b) 4v4
(c) 6v3 (d) 4v6
25. Triangle ABC is similar to triangle PQR and
AB : PQ = 2 : 3. AD is the median to the side
BC in triangle ABC and PS is the median to the
side QR in triangle PQR. What is the value of
(BD/QS)
2
?
ef$eYegpe ABC, ef$eYegpe PQR kesâ mece¤he nw leLee AB :
PQ = 2 : 3 nw~ AD, ef$eYegpe ABC ceW Yegpee BC hej Skeâ
ceeefOÙekeâe nw leLee PS, ef$eYegpe PQR ceW Yegpee QR hej
Skeâ ceeefOÙekeâe nw~ (BD/QS)
2
keâe ceeve keäÙee nw?
(a) 3/5 (b) 4/9
(c) 2/3 (d) 4/7
26. In the given figure, B and C are the centres of
the two circles. ADE is the common tangent to
the two circles. If the ratio of the radius of both
the circles is 3 : 5 and AC = 40, then what is the
value of DE?
oer ieF& Deeke=âefle ceW, B leLee C oes Je=òeeW kesâ kesâvõ nQ~
ADE oesveeW Je=òeeW keâer Skeâ GYeÙeefve<" mheMe& jsKee nw~ Ùeefo
oesveeW Je=òeeW keâer ef$epÙeeDeeW keâe Devegheele 3 : 5 nw leLee
AC = 40 nw, lees DE keâe ceeve keäÙee nw?
(a) 3v15 (b) 5v15
(c) 6v15 (d) 4v15
27. In the given figure, AB = 30 cm and CD = 24
cm. What is the value (in cm) of MN?
oer ieF& Deeke=âefle ceW, AB = 30 mes.ceer. leLee CD = 24
mes.ceer. nw~ MN keâe ceeve (mes.ceer. ceW) keäÙee nw?
(a) 18 (b) 9
(c) 12 (d) 15
28. AB and AC are the two tangents to a circle
whose radius is 6 cm. If ?BAC = 60
0
, then what
is the value (in cm) of v(AB
2
+ AC
2
)?
AB Deewj AC Skeâ Je=òe hej oes mheMe& jsKeeSB nQ efpemekeâer
ef$epÙee 6 mes.ceer. nw~ Ùeefo ?BAC = 60
0
nw, lees v(AB
2
+
AC
2
) keâe ceeve (mes.ceer. ceW) keäÙee nw?
(a) 6v6 (b) 4v6
(c) 9v3 (d) 8v3
29. In the given figure, ABC is a right angled
triangle. ?ABC = 90
0
and ?ACB = 60
0
. If the
radius of the smaller circle is 2 cm, then what is
the radius (in cm) of the larger circle?
oer ieF& Deeke=âefle ceW, ABC Skeâ mecekeâesCe ef$eYegpe nw~
?ABC = 90
0
leLee ?ACB = 60
0
nw~ Ùeefo Úesšs Je=òe
keâer ef$epÙee 2 mes.ceer. nw, lees yeÌ[s Je=òe keâer ef$epÙee (mes.ceer.
ceW) keäÙee nw?
(a) 4 (b) 6
(c) 4.5 (d) 7.5
30. In the given figure, O is centre of the circle.
Circle has 3 tangents. If ?QPR = 45
0
, then
what is the value (in degrees) of ?QOR?
oer ieF& Deeke=âefle ceW, O Je=òe keâe kesâvõ nw~ Je=òe hej 3 mheMe&
jsKeeSB nQ~ Ùeefo ?QPR = 45
0
nw, lees ?QOR keâe ceeve
(ef[«eer ceW) keäÙee nw?
(a) 67.5 (b) 72
(c) 78.5 (d) 65
Page 4
mebÙegòeâ mveelekeâ mlejerÙe hejer#ee, 2018
(Tier-II)
ieefCele (MATH)
JÙeeKÙee meefnle nue ØeMve he$e
Exam Date : 17-2-2018] [Time : 10 AM to 12 PM
1. What is the unit digit of the sum of first 111
whole numbers?
ØeLece 111 hetCe& mebKÙeeDeeW kesâ Ùeesie keâe FkeâeF& Debkeâ keäÙee
nw?
(a) 4 (b) 6
(c) 5 (d) 0
2. How many 100 digit positive number are
there?
100 DebkeâeW keâer efkeâleveer Oeveelcekeâ mebKÙeeSB nQ?
(a) 9 × 10
99
(b) 9 × 10
100
(c) 10100 (d) 11 × 10
98
3. What is the value of
5.6 0.36 0.42 3.2
?
0.8 2.1
× + ×
×
5.6 0.36 0.42 3.2
0.8 2.1
× + ×
×
keâe ceeve keäÙee nw?
(a) 2 (b) 1
(c) 3 (d) 3/2
4. What is the value of
–
– – –
3 3 3
2 2 2
(1.2) (0.8) (0.7) 2.016
?
(1.35) (1.2) (0.8) (0.7) 0.96 0.84 0.56
+ +
? ? + +
? ?
–
– – –
3 3 3
2 2 2
(1.2) (0.8) (0.7) 2.016
?
(1.35) (1.2) (0.8) (0.7) 0.96 0.84 0.56
+ +
? ? + +
? ?
keâe ceeve keäÙee nw?
(a) 1/4 (b) 1/2
(c) 1 (d) 2
5. What is the unit digit of
(217)
413
×(819)
547
×(414)
624
×(342)
812
?
(217)
413
×(819)
547
×(414)
624
×(342)
812
keâe FkeâeF& Debkeâ
keäÙee nw?
(a) 2 (b) 4
(c) 6 (d) 8
6. What is the value of
1 1
S
1 3 5 1 4
= + +
× × ×
1 1 1 1
...
3 5 7 4 7 5 7 9 7 10
+ + + +
× × × × × ×
upto 20
terms, then what is the value of S?
1 1 1 1
S
1 3 5 1 4 3 5 7 4 7
= + + + +
× × × × × ×
1 1
...
5 7 9 7 10
+ +
× × ×
20 heoeW lekeâ nQ, lees S keâe ceeve
keäÙee nw?
(a) 6179/15275 (b) 6070/14973
(c) 7191/15174 (d) 5183/16423
7. Which of the following is TRUE?
efvecveefueefKele ceW mes keâewve-mee melÙe nw?
I.
3 4
1 1 1
12 29 5
> >
II.
3 4
1 1 1
29 12 5
> >
III.
3 4
1 1 1
5 12 29
> >
IV.
3 4
1 1 1
5 29 12
> >
(a) Only I / kesâJeue I
(b) Only II / kesâJeue II
(c) Only III / kesâJeue III
(d) Only IV / kesâJeue IV
8. N is the largest two digit number, which when
divided by 3, 4 and 6 leaves the remainder 1, 2
and 4 respectively. What is the remainder
when N is divided by 5?
oes DebkeâeW keâer Skeâ meyemes yeÌ[er mebKÙee N nw, efpemes peye 3,
4 leLee 6 mes efJeYeeefpele efkeâÙee peelee nw lees Mes<eHeâue
›eâceMe: 1, 2 leLee 4 Deelee nw~ N keâes 5 mes efJeYeeefpele
keâjves hej Mes<eHeâue keäÙee nw?
(a) 4 (b) 2
(c) 0 (d) 1
9. Which of the following is TRUE?
efvecveefueefKele ceW mes keâewve-mee melÙe nw?
I.
3 4
11 7 45 > >
II.
3 4
7 11 45 > >
III.
3 4
7 45 11 > >
IV.
3 4
45 7 11 > >
(a) Only I / kesâJeue I
(b) Only II / kesâJeue II
(c) Only III / kesâJeue III
(d) Only IV / kesâJeue IV
10. A and B are positive integers. If A + B + AB =
65, then what is the difference between A and B
(A, B = 15)?
A leLee B Oeveelcekeâ hetCeeËkeâ nw~ Ùeefo A+B+AB = 65 nw,
lees A leLee B kesâ ceOÙe Deblej keäÙee nw (A, B = 15)?
(a) 3 (b) 4
(c) 5 (d) 6
11. What is the value of 14
3
+ 16
3
+ 18
3
+ .... + 30
3
?
14
3
+ 16
3
+ 18
3
+ ....... + 30
3
keâe ceeve keäÙee nw?
(a) 134576 (b) 120212
(c) 115624 (d) 111672
12. What is the value of
4600 540 1280 250 36 ? + + + +
4600 540 1280 250 36 ? + + + + keâe ceeve
keäÙee nw?
(a) 69 (b) 68
(c) 70 (d) 72
13. If x + y + z = 0, then what is the value of
(3y
2
+x
2
+z
2
)/(2y
2
–xz)?
Ùeefo x + y + z = 0 nes, lees (3y
2
+ x
2
+ z
2
)/(2y
2
–xz)
keâe ceeve keäÙee nw?
(a) 2 (b) 1
(c) 3/2 (d) 5/3
14. If P = 7+4v3 and PQ = 1, then what is the value
of 1/p
2
+ 1/Q
2
?
Ùeefo P = 7+4v3 leLee PQ = 1 nw, lees 1/p
2
+ 1/Q
2
keâe
ceeve keäÙee nw?
(a) 196 (b) 194
(c) 206 (d) 182
15. If a
3
+3a
2
+9a = 1, then what is the value of a
3
+
(3/a)?
Ùeefo a
3
+3a
2
+9a = 1 nes, lees a
3
+ (3/a) keâe ceeve keäÙee
nw?
(a) 31 (b) 26
(c) 28 (d) 24
16. x, y and z are real numbers. If x
3
+y
3
+z
3
= 13, x
+ y + z = 1 and xyz = 1, then what is the value
of xy + yz + zx?
x, y leLee z JeemleefJekeâ mebKÙeeSB nQ~ Ùeefo x
3
+y
3
+z
3
=
13, x + y + z = 1 leLee xyz = 1 nw, lees xy + yz + zx
keâe ceeve keäÙee nw?
(a) – 1 (b) 1
(c) 3 (d) – 3
17. If (a + b)/c = 6/5 and (b + c)/a = 9/2, then what
is the value of (a + c)/b?
Ùeefo (a + b)/c = 6/5 Deewj (b + c)/a = 9/2 nw, lees (a +
c)/b keâe ceeve keäÙee nw?
(a) 9/5 (b) 11/7
(c) 7/11 (d) 7/4
18. If x
3
+ y
3
+ z
3
= 3(1+xyz), P = y + z – x, Q = z +
x –y and R = x + y – z, then what is the value of
p
3
+Q
3
+R
3
–3PQR?
Ùeefo x
3
+ y
3
+ z
3
= 3(1+xyz), P = y + z – x, Q = z
+ x –y Deewj R = x + y – z, nw, lees p
3
+Q
3
+R
3
–3PQR
keâe ceeve keäÙee nw?
(a) 9 (b) 8
(c) 12 (d) 6
19. If x
1
x
2
x
3
= 4(4+x
1
+x
2
+x
3
), then what is the value
of [1/(2+x
1
)] + [1/(2+x
2
)] + [1/(2+x
3
)]?
Ùeefo x
1
x
2
x
3
= 4(4+x
1
+x
2
+x
3
), nes, lees [1/(2+x
1
)] +
[1/(2+x
2
)] + [1/(2+x
3
)] keâe ceeve keäÙee nw?
(a) 1 (b) 1/2
(c) 2 (d) 1/3
20. If a and ß are the roots of equation x
2
–x+1= 0,
then which equation will have roots a
3
and ß
3
?
Ùeefo a leLee ß meceerkeâjCe x
2
–x+1=0 kesâ cetue nQ, lees
efkeâme meceerkeâjCe kesâ cetue a
3
leLee ß
3
neWies?
(a) x
2
+ 2x + 1 = 0
(b) x
2
– 2x – 1 = 0
(c) x
2
+ 3x – 1 = 0
(d) x
2
– 3x + 1 = 0
21. If 3x + 5y + 7z = 49 and 9x + 8y + 21z = 126,
then what is the value of y?
Ùeefo 3x + 5y + 7z = 49 leLee 9x + 8y + 21z = 126,
nw, lees y keâe ceeve keäÙee nw?
(a) 4 (b) 2
(c) 3 (d) 5
22. Cost of 4 pens, 6 note books and 9 files is Rs.
305. Cost of 3 pens, 4 notebooks and 2 files is
Rs. 145. What is the cost (in Rs) of 5 pens, 8
notebooks and 16 files?
4 keâuece, 6 veesšyegkeâ leLee 9 HeâeFue keâe cetuÙe 305 ®0
nw~ 3 keâuece, 4 veesšyegkeâ leLee 2 HeâeFue keâe cetuÙe 145
®0 nw~ 5 keâuece, 8 veesšyegkeâ leLee 16 HeâeFue keâe cetuÙe
(®0 ceW) keäÙee nw?
(a) 415
(b) 465
(c) 440
(d) Cannot be determined / %eele veneR efkeâÙee pee mekeâlee
23. ABC is a right angled triangle. ?BAC = 90
0
and ?ACB = 60
0
. What is the ratio of the
circum radius of the triangle to the side AB?
ABC Skeâ mecekeâesCe ef$eYegpe nw~ ?BAC = 90
0
leLee
?ACB = 60
0
nw~ ef$eYegpe keâer heefjef$epÙee keâe Yegpee AB
mes keäÙee Devegheele nw?
(a) 1 : 2 (b) 1 : v3
(c) 2 : v3 (d) 2 : 3
24. In the given figure, ABCD is a square whose
side is 4 cm. P is a point on the side AD. What
is the minimum value (in cm) of BP + CP?
oer ieF& Deeke=âefle ceW, ABCD Skeâ Jeie& nw efpemekeâer Yegpee 4
mes.ceer. nw~ Yegpee AD hej P Skeâ efyevog nw~ BP + CP keâe
vÙetvelece ceeve (mes.ceer. ceW) keäÙee nw?
(a) 4v5 (b) 4v4
(c) 6v3 (d) 4v6
25. Triangle ABC is similar to triangle PQR and
AB : PQ = 2 : 3. AD is the median to the side
BC in triangle ABC and PS is the median to the
side QR in triangle PQR. What is the value of
(BD/QS)
2
?
ef$eYegpe ABC, ef$eYegpe PQR kesâ mece¤he nw leLee AB :
PQ = 2 : 3 nw~ AD, ef$eYegpe ABC ceW Yegpee BC hej Skeâ
ceeefOÙekeâe nw leLee PS, ef$eYegpe PQR ceW Yegpee QR hej
Skeâ ceeefOÙekeâe nw~ (BD/QS)
2
keâe ceeve keäÙee nw?
(a) 3/5 (b) 4/9
(c) 2/3 (d) 4/7
26. In the given figure, B and C are the centres of
the two circles. ADE is the common tangent to
the two circles. If the ratio of the radius of both
the circles is 3 : 5 and AC = 40, then what is the
value of DE?
oer ieF& Deeke=âefle ceW, B leLee C oes Je=òeeW kesâ kesâvõ nQ~
ADE oesveeW Je=òeeW keâer Skeâ GYeÙeefve<" mheMe& jsKee nw~ Ùeefo
oesveeW Je=òeeW keâer ef$epÙeeDeeW keâe Devegheele 3 : 5 nw leLee
AC = 40 nw, lees DE keâe ceeve keäÙee nw?
(a) 3v15 (b) 5v15
(c) 6v15 (d) 4v15
27. In the given figure, AB = 30 cm and CD = 24
cm. What is the value (in cm) of MN?
oer ieF& Deeke=âefle ceW, AB = 30 mes.ceer. leLee CD = 24
mes.ceer. nw~ MN keâe ceeve (mes.ceer. ceW) keäÙee nw?
(a) 18 (b) 9
(c) 12 (d) 15
28. AB and AC are the two tangents to a circle
whose radius is 6 cm. If ?BAC = 60
0
, then what
is the value (in cm) of v(AB
2
+ AC
2
)?
AB Deewj AC Skeâ Je=òe hej oes mheMe& jsKeeSB nQ efpemekeâer
ef$epÙee 6 mes.ceer. nw~ Ùeefo ?BAC = 60
0
nw, lees v(AB
2
+
AC
2
) keâe ceeve (mes.ceer. ceW) keäÙee nw?
(a) 6v6 (b) 4v6
(c) 9v3 (d) 8v3
29. In the given figure, ABC is a right angled
triangle. ?ABC = 90
0
and ?ACB = 60
0
. If the
radius of the smaller circle is 2 cm, then what is
the radius (in cm) of the larger circle?
oer ieF& Deeke=âefle ceW, ABC Skeâ mecekeâesCe ef$eYegpe nw~
?ABC = 90
0
leLee ?ACB = 60
0
nw~ Ùeefo Úesšs Je=òe
keâer ef$epÙee 2 mes.ceer. nw, lees yeÌ[s Je=òe keâer ef$epÙee (mes.ceer.
ceW) keäÙee nw?
(a) 4 (b) 6
(c) 4.5 (d) 7.5
30. In the given figure, O is centre of the circle.
Circle has 3 tangents. If ?QPR = 45
0
, then
what is the value (in degrees) of ?QOR?
oer ieF& Deeke=âefle ceW, O Je=òe keâe kesâvõ nw~ Je=òe hej 3 mheMe&
jsKeeSB nQ~ Ùeefo ?QPR = 45
0
nw, lees ?QOR keâe ceeve
(ef[«eer ceW) keäÙee nw?
(a) 67.5 (b) 72
(c) 78.5 (d) 65
31. In the given figure, two identical circles of
radius 4 cm touch each other. A and B are
the centres of the two circles. If RQ is a
tangent to the circle, then what is the length
(in cm) of RQ?
oer ieF& Deeke=âefle ceW, oes meceeve Je=òe efpevekeâer ef$epÙee 4
mesceer. nQ Skeâ otmejs keâes mheMe& keâj jns nQ~ oesveeW Je=òeeW kesâ
kesâvõ A leLee B nQ~ Ùeefo RQ Je=òe hej Skeâ mheMe&jsKee nw,
lees RQ keâer uecyeeF& (mesceer. ceW) keäÙee nw?
(a) 3v3 (b) 2v6
(c) 4v2 (d) 6v2
32. The radius of two circles is 3 cm. The distance
between the centres of the circles is 10 cm.
What is the ratio of the length of direct
common tangent to the length of the transverse
common tangent?
oes Je=òeeW keâer ef$epÙeeSB 3 mesceer0 leLee 4 mesceer0 nQ~ oesveeW
Je=òeeW kesâ kesâvõeW kesâ ceOÙe keâer otjer 10 mesceer0 nw~ GYeÙeefve…
DevegmheMe& jsKee keâer uecyeeF& keâe DevegØemLe DevegmheMe& jsKee
keâer uecyeeF& mes Devegheele keäÙee nw?
(a) v51 : v68 (b) v33 : v17
(c) v66 : v51 (d) v28 : v17
33. ABC is a triangle, AB = 5 cm, AC = v41 cm and
BC = 8 cm, AD is perpendicular to BC. What is
the area (in cm
2
) of triangle ABD?
ABC Skeâ ef$eYegpe nw~ AB = 5 mesceer0, AC = v41
mesceer0 leLee BC = 8 mesceer0 nw~ AD, BC hej Skeâ
meceuecye nw~ ef$eYegpe ABD keâe #es$eheâue (mesceer0
2
ceW)
keäÙee nw?
(a) 12 (b) 6
(c) 10 (d) 20
34. In the given figure, PQR is a triangle and
quadrilateral ABCD is inscribed in it. QD = 2
cm, QC = 5 cm, CR = 3 cm, BR = 4 cm, PB = 6
cm, PA = 5 cm and AD = 3 cm. What is the
area (in cm
2
) of the quadrilateral ABCD?
oer ieF& Deeke=âefle ceW, PQR Skeâ ef$eYegpe nw leLee ÛelegYeg&pe
ABCD GmeceW Debefkeâle efkeâÙee ieÙee nw~ QD = 2 mesceer0,
QC = 5 mesceer0, CR = 3 mesceer0, BR = 4 mesceer0, PB
= 6 mesceer, PA = 5 mesceer0 leLee AD = 3 mesceer0 nQ~
ÛelegYeg&pe ABCD keâe #es$eheâue (mesceer.
2
ceW) keäÙee nw?
(a) (23v21)/4 (b) (15v21)/4
(c) (17v21)/5 (d) (23v21)/5
35. In the given figure, ABCD is a square of side 14
cm. E and F are mid points of sides AB and DC
respectively. EPF is a semicircle whose
diameter is EF. LMNO is a square. What is the
area (in cm
2
) of the shaded region?
oer ieF& Deeke=âefle ceW, ABCD 14 mesceer0 Yegpee Jeeuee Skeâ
Jeie& nw~ E leLee F ›eâceMe: AB leLee DC Yegpee kesâ ceOÙe
efyevog nQ~ EPF, Skeâ DeOe&Je=òe nw efpemekeâe JÙeeme EF nw~
LMNO Skeâ Jeie& nw~ ÚeÙeebefkeâle Yeeie keâe #es$eheâue
(mesceer0
2
ceW) keäÙee nw?
(a) 108.5 (b) 94.5
(c) 70 (d) 120
36. In the given figure, ABCDEF is a regular
hexagon whose side is 6 cm. APF, QAB, DCR
and DES are equilateral triangles. What is the
area (in cm
2
) of the shaded region?
oer ieF& Deeke=âefle ceW, ABCDEF Skeâ mece <ešdYegpe nw
efpemekeâer Yegpee 6 mesceer0 nw~ APF, QAB, DCR leLee
DES meceyeeng ef$eYegpe nQ~ DeeÛÚeefole Yeeie keâe #es$eheâue
(mesceer0
2
ceW) keäÙee nw?
(a) 24v3 (b) 18v3
(c) 72v3 (d) 36v3
Page 5
mebÙegòeâ mveelekeâ mlejerÙe hejer#ee, 2018
(Tier-II)
ieefCele (MATH)
JÙeeKÙee meefnle nue ØeMve he$e
Exam Date : 17-2-2018] [Time : 10 AM to 12 PM
1. What is the unit digit of the sum of first 111
whole numbers?
ØeLece 111 hetCe& mebKÙeeDeeW kesâ Ùeesie keâe FkeâeF& Debkeâ keäÙee
nw?
(a) 4 (b) 6
(c) 5 (d) 0
2. How many 100 digit positive number are
there?
100 DebkeâeW keâer efkeâleveer Oeveelcekeâ mebKÙeeSB nQ?
(a) 9 × 10
99
(b) 9 × 10
100
(c) 10100 (d) 11 × 10
98
3. What is the value of
5.6 0.36 0.42 3.2
?
0.8 2.1
× + ×
×
5.6 0.36 0.42 3.2
0.8 2.1
× + ×
×
keâe ceeve keäÙee nw?
(a) 2 (b) 1
(c) 3 (d) 3/2
4. What is the value of
–
– – –
3 3 3
2 2 2
(1.2) (0.8) (0.7) 2.016
?
(1.35) (1.2) (0.8) (0.7) 0.96 0.84 0.56
+ +
? ? + +
? ?
–
– – –
3 3 3
2 2 2
(1.2) (0.8) (0.7) 2.016
?
(1.35) (1.2) (0.8) (0.7) 0.96 0.84 0.56
+ +
? ? + +
? ?
keâe ceeve keäÙee nw?
(a) 1/4 (b) 1/2
(c) 1 (d) 2
5. What is the unit digit of
(217)
413
×(819)
547
×(414)
624
×(342)
812
?
(217)
413
×(819)
547
×(414)
624
×(342)
812
keâe FkeâeF& Debkeâ
keäÙee nw?
(a) 2 (b) 4
(c) 6 (d) 8
6. What is the value of
1 1
S
1 3 5 1 4
= + +
× × ×
1 1 1 1
...
3 5 7 4 7 5 7 9 7 10
+ + + +
× × × × × ×
upto 20
terms, then what is the value of S?
1 1 1 1
S
1 3 5 1 4 3 5 7 4 7
= + + + +
× × × × × ×
1 1
...
5 7 9 7 10
+ +
× × ×
20 heoeW lekeâ nQ, lees S keâe ceeve
keäÙee nw?
(a) 6179/15275 (b) 6070/14973
(c) 7191/15174 (d) 5183/16423
7. Which of the following is TRUE?
efvecveefueefKele ceW mes keâewve-mee melÙe nw?
I.
3 4
1 1 1
12 29 5
> >
II.
3 4
1 1 1
29 12 5
> >
III.
3 4
1 1 1
5 12 29
> >
IV.
3 4
1 1 1
5 29 12
> >
(a) Only I / kesâJeue I
(b) Only II / kesâJeue II
(c) Only III / kesâJeue III
(d) Only IV / kesâJeue IV
8. N is the largest two digit number, which when
divided by 3, 4 and 6 leaves the remainder 1, 2
and 4 respectively. What is the remainder
when N is divided by 5?
oes DebkeâeW keâer Skeâ meyemes yeÌ[er mebKÙee N nw, efpemes peye 3,
4 leLee 6 mes efJeYeeefpele efkeâÙee peelee nw lees Mes<eHeâue
›eâceMe: 1, 2 leLee 4 Deelee nw~ N keâes 5 mes efJeYeeefpele
keâjves hej Mes<eHeâue keäÙee nw?
(a) 4 (b) 2
(c) 0 (d) 1
9. Which of the following is TRUE?
efvecveefueefKele ceW mes keâewve-mee melÙe nw?
I.
3 4
11 7 45 > >
II.
3 4
7 11 45 > >
III.
3 4
7 45 11 > >
IV.
3 4
45 7 11 > >
(a) Only I / kesâJeue I
(b) Only II / kesâJeue II
(c) Only III / kesâJeue III
(d) Only IV / kesâJeue IV
10. A and B are positive integers. If A + B + AB =
65, then what is the difference between A and B
(A, B = 15)?
A leLee B Oeveelcekeâ hetCeeËkeâ nw~ Ùeefo A+B+AB = 65 nw,
lees A leLee B kesâ ceOÙe Deblej keäÙee nw (A, B = 15)?
(a) 3 (b) 4
(c) 5 (d) 6
11. What is the value of 14
3
+ 16
3
+ 18
3
+ .... + 30
3
?
14
3
+ 16
3
+ 18
3
+ ....... + 30
3
keâe ceeve keäÙee nw?
(a) 134576 (b) 120212
(c) 115624 (d) 111672
12. What is the value of
4600 540 1280 250 36 ? + + + +
4600 540 1280 250 36 ? + + + + keâe ceeve
keäÙee nw?
(a) 69 (b) 68
(c) 70 (d) 72
13. If x + y + z = 0, then what is the value of
(3y
2
+x
2
+z
2
)/(2y
2
–xz)?
Ùeefo x + y + z = 0 nes, lees (3y
2
+ x
2
+ z
2
)/(2y
2
–xz)
keâe ceeve keäÙee nw?
(a) 2 (b) 1
(c) 3/2 (d) 5/3
14. If P = 7+4v3 and PQ = 1, then what is the value
of 1/p
2
+ 1/Q
2
?
Ùeefo P = 7+4v3 leLee PQ = 1 nw, lees 1/p
2
+ 1/Q
2
keâe
ceeve keäÙee nw?
(a) 196 (b) 194
(c) 206 (d) 182
15. If a
3
+3a
2
+9a = 1, then what is the value of a
3
+
(3/a)?
Ùeefo a
3
+3a
2
+9a = 1 nes, lees a
3
+ (3/a) keâe ceeve keäÙee
nw?
(a) 31 (b) 26
(c) 28 (d) 24
16. x, y and z are real numbers. If x
3
+y
3
+z
3
= 13, x
+ y + z = 1 and xyz = 1, then what is the value
of xy + yz + zx?
x, y leLee z JeemleefJekeâ mebKÙeeSB nQ~ Ùeefo x
3
+y
3
+z
3
=
13, x + y + z = 1 leLee xyz = 1 nw, lees xy + yz + zx
keâe ceeve keäÙee nw?
(a) – 1 (b) 1
(c) 3 (d) – 3
17. If (a + b)/c = 6/5 and (b + c)/a = 9/2, then what
is the value of (a + c)/b?
Ùeefo (a + b)/c = 6/5 Deewj (b + c)/a = 9/2 nw, lees (a +
c)/b keâe ceeve keäÙee nw?
(a) 9/5 (b) 11/7
(c) 7/11 (d) 7/4
18. If x
3
+ y
3
+ z
3
= 3(1+xyz), P = y + z – x, Q = z +
x –y and R = x + y – z, then what is the value of
p
3
+Q
3
+R
3
–3PQR?
Ùeefo x
3
+ y
3
+ z
3
= 3(1+xyz), P = y + z – x, Q = z
+ x –y Deewj R = x + y – z, nw, lees p
3
+Q
3
+R
3
–3PQR
keâe ceeve keäÙee nw?
(a) 9 (b) 8
(c) 12 (d) 6
19. If x
1
x
2
x
3
= 4(4+x
1
+x
2
+x
3
), then what is the value
of [1/(2+x
1
)] + [1/(2+x
2
)] + [1/(2+x
3
)]?
Ùeefo x
1
x
2
x
3
= 4(4+x
1
+x
2
+x
3
), nes, lees [1/(2+x
1
)] +
[1/(2+x
2
)] + [1/(2+x
3
)] keâe ceeve keäÙee nw?
(a) 1 (b) 1/2
(c) 2 (d) 1/3
20. If a and ß are the roots of equation x
2
–x+1= 0,
then which equation will have roots a
3
and ß
3
?
Ùeefo a leLee ß meceerkeâjCe x
2
–x+1=0 kesâ cetue nQ, lees
efkeâme meceerkeâjCe kesâ cetue a
3
leLee ß
3
neWies?
(a) x
2
+ 2x + 1 = 0
(b) x
2
– 2x – 1 = 0
(c) x
2
+ 3x – 1 = 0
(d) x
2
– 3x + 1 = 0
21. If 3x + 5y + 7z = 49 and 9x + 8y + 21z = 126,
then what is the value of y?
Ùeefo 3x + 5y + 7z = 49 leLee 9x + 8y + 21z = 126,
nw, lees y keâe ceeve keäÙee nw?
(a) 4 (b) 2
(c) 3 (d) 5
22. Cost of 4 pens, 6 note books and 9 files is Rs.
305. Cost of 3 pens, 4 notebooks and 2 files is
Rs. 145. What is the cost (in Rs) of 5 pens, 8
notebooks and 16 files?
4 keâuece, 6 veesšyegkeâ leLee 9 HeâeFue keâe cetuÙe 305 ®0
nw~ 3 keâuece, 4 veesšyegkeâ leLee 2 HeâeFue keâe cetuÙe 145
®0 nw~ 5 keâuece, 8 veesšyegkeâ leLee 16 HeâeFue keâe cetuÙe
(®0 ceW) keäÙee nw?
(a) 415
(b) 465
(c) 440
(d) Cannot be determined / %eele veneR efkeâÙee pee mekeâlee
23. ABC is a right angled triangle. ?BAC = 90
0
and ?ACB = 60
0
. What is the ratio of the
circum radius of the triangle to the side AB?
ABC Skeâ mecekeâesCe ef$eYegpe nw~ ?BAC = 90
0
leLee
?ACB = 60
0
nw~ ef$eYegpe keâer heefjef$epÙee keâe Yegpee AB
mes keäÙee Devegheele nw?
(a) 1 : 2 (b) 1 : v3
(c) 2 : v3 (d) 2 : 3
24. In the given figure, ABCD is a square whose
side is 4 cm. P is a point on the side AD. What
is the minimum value (in cm) of BP + CP?
oer ieF& Deeke=âefle ceW, ABCD Skeâ Jeie& nw efpemekeâer Yegpee 4
mes.ceer. nw~ Yegpee AD hej P Skeâ efyevog nw~ BP + CP keâe
vÙetvelece ceeve (mes.ceer. ceW) keäÙee nw?
(a) 4v5 (b) 4v4
(c) 6v3 (d) 4v6
25. Triangle ABC is similar to triangle PQR and
AB : PQ = 2 : 3. AD is the median to the side
BC in triangle ABC and PS is the median to the
side QR in triangle PQR. What is the value of
(BD/QS)
2
?
ef$eYegpe ABC, ef$eYegpe PQR kesâ mece¤he nw leLee AB :
PQ = 2 : 3 nw~ AD, ef$eYegpe ABC ceW Yegpee BC hej Skeâ
ceeefOÙekeâe nw leLee PS, ef$eYegpe PQR ceW Yegpee QR hej
Skeâ ceeefOÙekeâe nw~ (BD/QS)
2
keâe ceeve keäÙee nw?
(a) 3/5 (b) 4/9
(c) 2/3 (d) 4/7
26. In the given figure, B and C are the centres of
the two circles. ADE is the common tangent to
the two circles. If the ratio of the radius of both
the circles is 3 : 5 and AC = 40, then what is the
value of DE?
oer ieF& Deeke=âefle ceW, B leLee C oes Je=òeeW kesâ kesâvõ nQ~
ADE oesveeW Je=òeeW keâer Skeâ GYeÙeefve<" mheMe& jsKee nw~ Ùeefo
oesveeW Je=òeeW keâer ef$epÙeeDeeW keâe Devegheele 3 : 5 nw leLee
AC = 40 nw, lees DE keâe ceeve keäÙee nw?
(a) 3v15 (b) 5v15
(c) 6v15 (d) 4v15
27. In the given figure, AB = 30 cm and CD = 24
cm. What is the value (in cm) of MN?
oer ieF& Deeke=âefle ceW, AB = 30 mes.ceer. leLee CD = 24
mes.ceer. nw~ MN keâe ceeve (mes.ceer. ceW) keäÙee nw?
(a) 18 (b) 9
(c) 12 (d) 15
28. AB and AC are the two tangents to a circle
whose radius is 6 cm. If ?BAC = 60
0
, then what
is the value (in cm) of v(AB
2
+ AC
2
)?
AB Deewj AC Skeâ Je=òe hej oes mheMe& jsKeeSB nQ efpemekeâer
ef$epÙee 6 mes.ceer. nw~ Ùeefo ?BAC = 60
0
nw, lees v(AB
2
+
AC
2
) keâe ceeve (mes.ceer. ceW) keäÙee nw?
(a) 6v6 (b) 4v6
(c) 9v3 (d) 8v3
29. In the given figure, ABC is a right angled
triangle. ?ABC = 90
0
and ?ACB = 60
0
. If the
radius of the smaller circle is 2 cm, then what is
the radius (in cm) of the larger circle?
oer ieF& Deeke=âefle ceW, ABC Skeâ mecekeâesCe ef$eYegpe nw~
?ABC = 90
0
leLee ?ACB = 60
0
nw~ Ùeefo Úesšs Je=òe
keâer ef$epÙee 2 mes.ceer. nw, lees yeÌ[s Je=òe keâer ef$epÙee (mes.ceer.
ceW) keäÙee nw?
(a) 4 (b) 6
(c) 4.5 (d) 7.5
30. In the given figure, O is centre of the circle.
Circle has 3 tangents. If ?QPR = 45
0
, then
what is the value (in degrees) of ?QOR?
oer ieF& Deeke=âefle ceW, O Je=òe keâe kesâvõ nw~ Je=òe hej 3 mheMe&
jsKeeSB nQ~ Ùeefo ?QPR = 45
0
nw, lees ?QOR keâe ceeve
(ef[«eer ceW) keäÙee nw?
(a) 67.5 (b) 72
(c) 78.5 (d) 65
31. In the given figure, two identical circles of
radius 4 cm touch each other. A and B are
the centres of the two circles. If RQ is a
tangent to the circle, then what is the length
(in cm) of RQ?
oer ieF& Deeke=âefle ceW, oes meceeve Je=òe efpevekeâer ef$epÙee 4
mesceer. nQ Skeâ otmejs keâes mheMe& keâj jns nQ~ oesveeW Je=òeeW kesâ
kesâvõ A leLee B nQ~ Ùeefo RQ Je=òe hej Skeâ mheMe&jsKee nw,
lees RQ keâer uecyeeF& (mesceer. ceW) keäÙee nw?
(a) 3v3 (b) 2v6
(c) 4v2 (d) 6v2
32. The radius of two circles is 3 cm. The distance
between the centres of the circles is 10 cm.
What is the ratio of the length of direct
common tangent to the length of the transverse
common tangent?
oes Je=òeeW keâer ef$epÙeeSB 3 mesceer0 leLee 4 mesceer0 nQ~ oesveeW
Je=òeeW kesâ kesâvõeW kesâ ceOÙe keâer otjer 10 mesceer0 nw~ GYeÙeefve…
DevegmheMe& jsKee keâer uecyeeF& keâe DevegØemLe DevegmheMe& jsKee
keâer uecyeeF& mes Devegheele keäÙee nw?
(a) v51 : v68 (b) v33 : v17
(c) v66 : v51 (d) v28 : v17
33. ABC is a triangle, AB = 5 cm, AC = v41 cm and
BC = 8 cm, AD is perpendicular to BC. What is
the area (in cm
2
) of triangle ABD?
ABC Skeâ ef$eYegpe nw~ AB = 5 mesceer0, AC = v41
mesceer0 leLee BC = 8 mesceer0 nw~ AD, BC hej Skeâ
meceuecye nw~ ef$eYegpe ABD keâe #es$eheâue (mesceer0
2
ceW)
keäÙee nw?
(a) 12 (b) 6
(c) 10 (d) 20
34. In the given figure, PQR is a triangle and
quadrilateral ABCD is inscribed in it. QD = 2
cm, QC = 5 cm, CR = 3 cm, BR = 4 cm, PB = 6
cm, PA = 5 cm and AD = 3 cm. What is the
area (in cm
2
) of the quadrilateral ABCD?
oer ieF& Deeke=âefle ceW, PQR Skeâ ef$eYegpe nw leLee ÛelegYeg&pe
ABCD GmeceW Debefkeâle efkeâÙee ieÙee nw~ QD = 2 mesceer0,
QC = 5 mesceer0, CR = 3 mesceer0, BR = 4 mesceer0, PB
= 6 mesceer, PA = 5 mesceer0 leLee AD = 3 mesceer0 nQ~
ÛelegYeg&pe ABCD keâe #es$eheâue (mesceer.
2
ceW) keäÙee nw?
(a) (23v21)/4 (b) (15v21)/4
(c) (17v21)/5 (d) (23v21)/5
35. In the given figure, ABCD is a square of side 14
cm. E and F are mid points of sides AB and DC
respectively. EPF is a semicircle whose
diameter is EF. LMNO is a square. What is the
area (in cm
2
) of the shaded region?
oer ieF& Deeke=âefle ceW, ABCD 14 mesceer0 Yegpee Jeeuee Skeâ
Jeie& nw~ E leLee F ›eâceMe: AB leLee DC Yegpee kesâ ceOÙe
efyevog nQ~ EPF, Skeâ DeOe&Je=òe nw efpemekeâe JÙeeme EF nw~
LMNO Skeâ Jeie& nw~ ÚeÙeebefkeâle Yeeie keâe #es$eheâue
(mesceer0
2
ceW) keäÙee nw?
(a) 108.5 (b) 94.5
(c) 70 (d) 120
36. In the given figure, ABCDEF is a regular
hexagon whose side is 6 cm. APF, QAB, DCR
and DES are equilateral triangles. What is the
area (in cm
2
) of the shaded region?
oer ieF& Deeke=âefle ceW, ABCDEF Skeâ mece <ešdYegpe nw
efpemekeâer Yegpee 6 mesceer0 nw~ APF, QAB, DCR leLee
DES meceyeeng ef$eYegpe nQ~ DeeÛÚeefole Yeeie keâe #es$eheâue
(mesceer0
2
ceW) keäÙee nw?
(a) 24v3 (b) 18v3
(c) 72v3 (d) 36v3
37. Length and breadth of a rectangle are 8 cm
and 6 cm respectively. The rectangle is cut on
its four vertices such that the resulting figure is
a regular octagon. What is the side (in cm) of
the octagon?
Skeâ DeeÙele keâer uecyeeF& leLee ÛeewÌ[eF& ›eâceMe: 8 mesceer0
leLee 6 mesceer0 nQ~ DeeÙele keâes Gmekesâ Ûeej Meer<eeX hej Fme
Øekeâej keâeše peelee nw efkeâ efceueves Jeeueer Deeke=âefle Skeâ mece
De„Yegpe nw~ De„Yegpe keâer Yegpee (mesceer0 ceW) keäÙee nw?
(a) 3(v11) – 7
(b) 5(v13) – 8
(c) 4(v3) – 11
(d) 6(v11) – 9
38. In the given figure, radius of a circle is 14 2
cm. PQRS is a square. EFGH, ABCD, WXYZ
and LMNO are four identical squares. What is
the total area (in cm
2
) of all the small squares?
oer ieF& Deeke=âefle ceW, Skeâ Je=òe keâer ef$epÙee 14 2 mesceer0
nw~ PQRS Skeâ Jeie& nw~ EFGH, ABCD, WXYZ
leLee LMNO Ûeej meceeve Jeie& nQ~ meYeer Úesšs JeieeX keâe
kegâue #es$eheâue (mesceer0
2
ceW) keäÙee nw?
(a) 31.36 (b) 125.44
(c) 62.72 (d) 156.8
39. In the given figure, AB, AE, EF, FG and GB
are semicircles. AB = 56 cm and AE = EF = FG
= GB. What is the area (in cm
2
) of the shaded
region?
oer ieF& Deeke=âefle ceW, AB, AE, EF, FG leLee GB
DeOe&Je=òe nQ~ AB = 56 mesceer0 leLee AE = EF = FG
= GB nQ~ ÚeÙeebefkeâle Yeeie keâe #es$eheâue (mesceer0
2
ceW)
keäÙee nw?
(a) 414.46 (b) 382.82
(c) 406.48 (d) 394.24
40. A right prism has a square base with side of
base 4 cm and the height of prism is 9 cm. The
prism is cut in three parts of equal heights by
two planes parallel to its base. What is the ratio
of the volume of the top, middle and the bottom
part respectively?
Skeâ mece efØepce keâe DeeOeej 4 mesceer0 Yegpee Jeeuee Skeâ
Jeie& nw leLee efØepce keâer TBÛeeF& 9 mesceer0 nw~ efØepce keâes
Gmekesâ DeeOeej kesâ meceeblej oes leueeW Éeje meceeve TBÛeeF& kesâ
leerve YeeieeW ceW keâeše ieÙee nw~ ›eâceMe: Thejer ceOÙe leLee
efveÛeues YeeieeW kesâ DeeÙeleve keâe Devegheele keäÙee nw?
(a) 1 : 8 : 27 (b) 1 : 7 : 19
(c) 1 : 8 : 20 (d) 1 : 7 : 20
41. Radius of base of a hollow cone is 8 cm and its
height is 15 cm. A sphere of largest radius is
put inside the cone. What is the ratio of radius
of base of cone to the radius of sphere?
Skeâ KeesKeues Mebkegâ kesâ DeeOeej ef$epÙee 8 mesceer0 leLee
Gmekeâer TBÛeeF& 15 mesceer0 nQ~ meyemes yeÌ[er ef$epÙee Jeeuee
Skeâ ieesuee Gme Mebkegâ ceW [euee peelee nw~ Mebkegâ kesâ DeeOeej
keâer ef$epÙee keâe ieesues keâer ef$epÙee mes keäÙee Devegheele nw?
(a) 5 : 3 (b) 4 : 1
(c) 2 : 1 (d) 7 : 3
42. The ratio of curved surface area of a right
circular cylinder to the total area of its two
bases is 2 : 1. If the total surface area of
cylinder is 23100 cm
2
, then what is the volume
(in cm
3
) of cylinder?
mece Je=òeekeâj yesueve kesâ Je›eâ he=…erÙe #es$eheâue keâe Devegheele
Gmekesâ oesveeW DeeOeejeW kesâ kegâue #es$eheâue mes 2 : 1 nw~ Ùeefo
yesueve keâe kegâue he=…erÙe #es$eheâue 23100 mesceer0
2
nw, lees
yesueve keâe DeeÙeleve (mesceer0
3
ceW) keäÙee nw?
(a) 247200 (b) 269500
(c) 312500 (d) 341800
43. A solid cylinder has radius of base 14 cm and
height 15 cm. 4 identical cylinders are cut from
each base as shown in the given figure. Height
of small cylinder is 5 cm. What is the total
surface area (in cm
2
) of the remaining part?
Skeâ "esme yesueve kesâ DeeOeej keâer ef$epÙee 14 mesceer0 leLee
TBÛeeF& 15 mesceer0 nw~ pewmee efkeâ Deeke=âefle ceW oMee&Ùee ieÙee
nw efkeâ Fmekesâ ØelÙeskeâ DeeOeej mes 4 meceeve yesueve keâešs nQ~
Úesšs yesueve keâer TBÛeeF& 5 mesceer. nw~ Mes<e Yeeie keâe kegâue
he=…erÙe #es$eheâue (mesceer0
2
ceW) keäÙee nw?
(a) 3740 (b) 3432
(c) 3124 (d) 2816
Read More