Page 1
mebÙegòeâ mveelekeâ mlejerÙe hejer#ee, 2018
(Tier-II)
ieefCele (MATH)
JÙeeKÙee meefnle nue ØeMve he$e
Exam Date : 18-2-2018] [Time : 10 AM to 12 PM
1. How many three digit numbers are there in
which all the digits are odd ?
leerve DebkeâeW Jeeueer Ssmeer efkeâleveer mebKÙeeSB nQ efpemeceW meYeer
Debkeâ efJe<ece nQ?
(a) 100 (b) 125
(c) 500 (d) 250
2. If the sum of ten different positive integers is
100, then what is the greatest possible number
among these 10 numbers ?
Ùeefo ome efJeefYeVe Oeveelcekeâ hetCeeËkeâeW keâe Ùeesie 100 nw,
lees Fve 10 mebKÙeeDeeW ceW meyemes yeÌ[er mebYeeefJele mebKÙee
keäÙee nw?
(a) 45 (b) 91
(c) 55 (d) 64
3. If N = 0.369369369369..... and M =
0.531531531531...., then what is the value of
(1/N) + (1/M) ?
Ùeefo N = 0.369369369369.... leLee M =
0.531531531531.... nQ, lees (1/N) + (1/M) keâe ceeve
keäÙee nw?
(a) 11100/2419 (b) 111/100
(c) 1897/3162 (d) 2419/11100
4. If
0.216 + 0.008
A =
0.36 + 0.04 - 0.12
and
0.729 - 0.027
B =
0.81 + 0.09 + 0.27
then what is the value of (A
2
+ B
2
) ?
Ùeefo
0.216 + 0.008
A =
0.36 + 0.04 - 0.12
leLee
0.729 - 0.027
B =
0.81 + 0.09 + 0.27
nes, lees (A
2
+ B
2
) keâe ceeve
keäÙee nw?
(a) 0.8 (b) 1
(c) 1.4 (d) 2.2
5. If
1 1 1 1 1
A = + + + +
1× 2 1×4 2× 3 4× 7 3× 4
1
+ ...
7×10
upto 20 terms, then what is the value of A ?
Ùeefo
1 1 1 1 1
A = + + + +
1× 2 1× 4 2× 3 4× 7 3× 4
............
1
+
7×10
heoeW lekeâ nes, lees A keâe ceeve keäÙee
nw?
(a) 379/308 (b) 171/140
(c) 379/310 (d) 420/341
6. If 56 × 75 × 60 × 84 × 210 = 2
p
× 3
q
× 5
r
× 7
s
,
then what is the value of [(p+q)/s]+r ?
Ùeefo 56 × 75 × 60 × 84 × 210 = 2
p
× 3
q
× 5
r
× 7
s
.
nes, lees [(p+q)/s]+r keâe ceeve keäÙee nw?
(a) 6 (b) 8
(c) 12 (d) 10
7. If
1 1 47 47
A = 3 × 4 ÷ 34 - +
4 4 32 16
and
1 1 11
B = 2 + 5 ÷ 55 -
2 2 10
then what is the value of
A–B ?
Ùeefo
1 1 47 47
A = 3 × 4 ÷ 34 - +
4 4 32 16
leLee
1 1 11
B = 2 + 5 ÷ 55 -
2 2 10
nes, lees A – B keâe ceeve keäÙee
nw?
(a) 5/8 (b) 1
(c) 0 (d) 3/8
8. What is the sum of all natural numbers
between 100 and 400 which are divisible by 13?
100 leLee 400 kesâ ceOÙe meYeer Øeeke=âeflekeâ mebKÙeeDeeW keâe
Ùeesie keäÙee nw pees 13 mes efJeYeepÙe nw?
(a) 5681 (b) 5334
(c) 5434 (d) 5761
9. If the least common multiple of two numbers,
1728 and K is 5184, then how many values of K
are possible ?
Ùeefo oes mebKÙeeDeeW 1728 leLee K keâe ueIegòece meceeheJelÙe&
5184 nw, lees K kesâ efkeâleves ceeve mebYeJe nw?
(a) 11 (b) 8
(c) 6 (d) 7
10. If (3
33
+ 3
33
+ 3
33
) (2
33
+ 2
33
) = 6
x
then what is
the value of ?
Ùeefo (3
33
+ 3
33
+ 3
33
) (2
33
+ 2
33
) = 6
x
nes, lees x keâe
ceeve keäÙee nw?
(a) 34 (b) 35
(c) 33 (d) 33.5
11. Which of the following statement(s) is/are true?
efvecveefueefKele keâLeve/keâLeveeW ceW mes keâewve mee/mes mener
nw/nQ?
I. (65)
1/6
> (17)
1/4
> (12)
1/3
II. (17)
1/4
> (65)
1/6
> (12)
1/3
III. (12)
1/3
> (17)
1/4
> (65)
1/6
Page 2
mebÙegòeâ mveelekeâ mlejerÙe hejer#ee, 2018
(Tier-II)
ieefCele (MATH)
JÙeeKÙee meefnle nue ØeMve he$e
Exam Date : 18-2-2018] [Time : 10 AM to 12 PM
1. How many three digit numbers are there in
which all the digits are odd ?
leerve DebkeâeW Jeeueer Ssmeer efkeâleveer mebKÙeeSB nQ efpemeceW meYeer
Debkeâ efJe<ece nQ?
(a) 100 (b) 125
(c) 500 (d) 250
2. If the sum of ten different positive integers is
100, then what is the greatest possible number
among these 10 numbers ?
Ùeefo ome efJeefYeVe Oeveelcekeâ hetCeeËkeâeW keâe Ùeesie 100 nw,
lees Fve 10 mebKÙeeDeeW ceW meyemes yeÌ[er mebYeeefJele mebKÙee
keäÙee nw?
(a) 45 (b) 91
(c) 55 (d) 64
3. If N = 0.369369369369..... and M =
0.531531531531...., then what is the value of
(1/N) + (1/M) ?
Ùeefo N = 0.369369369369.... leLee M =
0.531531531531.... nQ, lees (1/N) + (1/M) keâe ceeve
keäÙee nw?
(a) 11100/2419 (b) 111/100
(c) 1897/3162 (d) 2419/11100
4. If
0.216 + 0.008
A =
0.36 + 0.04 - 0.12
and
0.729 - 0.027
B =
0.81 + 0.09 + 0.27
then what is the value of (A
2
+ B
2
) ?
Ùeefo
0.216 + 0.008
A =
0.36 + 0.04 - 0.12
leLee
0.729 - 0.027
B =
0.81 + 0.09 + 0.27
nes, lees (A
2
+ B
2
) keâe ceeve
keäÙee nw?
(a) 0.8 (b) 1
(c) 1.4 (d) 2.2
5. If
1 1 1 1 1
A = + + + +
1× 2 1×4 2× 3 4× 7 3× 4
1
+ ...
7×10
upto 20 terms, then what is the value of A ?
Ùeefo
1 1 1 1 1
A = + + + +
1× 2 1× 4 2× 3 4× 7 3× 4
............
1
+
7×10
heoeW lekeâ nes, lees A keâe ceeve keäÙee
nw?
(a) 379/308 (b) 171/140
(c) 379/310 (d) 420/341
6. If 56 × 75 × 60 × 84 × 210 = 2
p
× 3
q
× 5
r
× 7
s
,
then what is the value of [(p+q)/s]+r ?
Ùeefo 56 × 75 × 60 × 84 × 210 = 2
p
× 3
q
× 5
r
× 7
s
.
nes, lees [(p+q)/s]+r keâe ceeve keäÙee nw?
(a) 6 (b) 8
(c) 12 (d) 10
7. If
1 1 47 47
A = 3 × 4 ÷ 34 - +
4 4 32 16
and
1 1 11
B = 2 + 5 ÷ 55 -
2 2 10
then what is the value of
A–B ?
Ùeefo
1 1 47 47
A = 3 × 4 ÷ 34 - +
4 4 32 16
leLee
1 1 11
B = 2 + 5 ÷ 55 -
2 2 10
nes, lees A – B keâe ceeve keäÙee
nw?
(a) 5/8 (b) 1
(c) 0 (d) 3/8
8. What is the sum of all natural numbers
between 100 and 400 which are divisible by 13?
100 leLee 400 kesâ ceOÙe meYeer Øeeke=âeflekeâ mebKÙeeDeeW keâe
Ùeesie keäÙee nw pees 13 mes efJeYeepÙe nw?
(a) 5681 (b) 5334
(c) 5434 (d) 5761
9. If the least common multiple of two numbers,
1728 and K is 5184, then how many values of K
are possible ?
Ùeefo oes mebKÙeeDeeW 1728 leLee K keâe ueIegòece meceeheJelÙe&
5184 nw, lees K kesâ efkeâleves ceeve mebYeJe nw?
(a) 11 (b) 8
(c) 6 (d) 7
10. If (3
33
+ 3
33
+ 3
33
) (2
33
+ 2
33
) = 6
x
then what is
the value of ?
Ùeefo (3
33
+ 3
33
+ 3
33
) (2
33
+ 2
33
) = 6
x
nes, lees x keâe
ceeve keäÙee nw?
(a) 34 (b) 35
(c) 33 (d) 33.5
11. Which of the following statement(s) is/are true?
efvecveefueefKele keâLeve/keâLeveeW ceW mes keâewve mee/mes mener
nw/nQ?
I. (65)
1/6
> (17)
1/4
> (12)
1/3
II. (17)
1/4
> (65)
1/6
> (12)
1/3
III. (12)
1/3
> (17)
1/4
> (65)
1/6
(a) Only I/kesâJeue I
(b) Only III/kesâJeue III
(c) Only II/kesâJeue II
(d) None of these/FveceW mes keâesF& veneR
12. If P = 7 + 4 3 and PQ =1, then what is the
value of (1/P
2
) + (1/Q
2
) ?
Ùeefo P = 7 + 4 3 leLee PQ = 1 nQ, lees (1/P
2
) +
(1+Q
2
) keâe ceeve keäÙee nw?
(a) 148 (b) 189
(c) 194 (d) 204
13. If
( )
x = 5 + 1 and
( )
y = 5 - 1 then what is
the value of (x
2
/y
2
) + (y
2
/x
2
) +
x y
4
y x
? ?
+
? ?
? ?
+ 6 ?
Ùeefo
( )
x = 5 + 1 leLee
( )
y = 5 - 1 nQ, lees (x
2
/y
2
)
+ (y
2
/x
2
) +
x y
4
y x
? ?
+
? ?
? ?
+ 6 keâe ceeve keäÙee nw?
(a) 31 (b) 23 5
(c) 27 5 (d) 25
14. If , x = 2 + 3 y = 2 - 3 and z = 1, then what is
the value of (x/yz) + (y/xz) + (z/xy) + 2 [(1/x) +
(1/y) + (1/z)] ?
Ùeefo , x = 2 + 3 y = 2 - 3 leLee z = 1 nQ, lees (x/yz)
+ (y/xz) + (z/xy) + 2 [(1/x) + (1/y) + (1/z)] keâe
ceeve keäÙee nw?
(a) 25 (b) 22
(c) 17 (d) 43
15. A root of equation ax
2
+ bx + c = 0 (where a, b
and c are rational numbers) is 5 + 3 3 . What
is the value of (a
2
+ b
2
+ c
2
)/(a+b+c) ?
meceerkeâjCe ax
2
+ bx + c = 0 (peneB a, b leLee c heefjcesÙe
mebKÙeeSB nw) keâe cetue 5 + 3 3 nw~ (a
2
+ b
2
+ c
2
)/(a + b
+ c) keâe ceeve keäÙee nw?
(a) 35/3 (b) 37/3
(c) –105/11 (d) –105/13
16. If x = (a/b) + (b/a), y = (b/c) + (c/b) and z = (c/a)
+ (a/c), then what is the value of xyz – x
2
– y
2
–
z
2
?
Ùeefo x = (a/b) + (b/a), y = (b/c) + (c/b) leLee z =
(c/a) + (a/c) nQ, lees xyz – x
2
– y
2
– z
2
keâe ceeve keäÙee
nw?
(a) –4 (b) 2
(c) –1 (d) –6
17. If [a+(1/a)]
2
– 2[a–(1/a)] = 12, then which of the
following is a value of 'a' ?
Ùeefo [a+(1/a)]
2
–2[a–(1/a)] = 12 nes, lees efvecveefueefKele
ceW mes keâewve mee 'a' keâe Skeâ ceeve nw?
(a) 8 3 - +
(b) 8 3 - -
(c) 8 5 - +
(d) None of these/FveceW mes keâesF& veneR
18. If x
2
– 4x + 1 = 0, then what is the value of
x
9
+ x
7
– 194x
5
– 194x
3
?
Ùeefo x
2
– 4x + 1 = 0 nes, lees x
9
+ x
7
– 194x
5
– 194x
3
keâe ceeve keäÙee nw?
(a) 4 (b) –4
(c) 1 (d) –1
19. If x+y= 3, then what is the value of x
3
+y
3
+9xy?
Ùeefo x+y= 3 nes, lees x
3
+y
3
+9xy keâe ceeve keäÙee nw?
(a) 15 (b) 81
(c) 27 (d) 9
20. A = (x
8
–1)/(x
4
+ 1) and B = (y
4
–1)/(y
2
+ 1). If x
= 2 and y = 9, the what is the value of A
2
+ 2AB
+ AB
2
?
A = (x
8
–1)/(x
4
+ 1) leLee B = (y
4
–1)/(y
2
+ 1) nQ~
Ùeefo x = 2 leLee y = 9 nQ, lees A
2
+ 2AB + AB
2
keâe
ceeve keäÙee nw?
(a) 96475 (b) 98625
(c) 92425 (d) 89125
21. If x–4y = 0 and x + 2y = 24, then what is the
value of (2x + 3y)/(2x–3y) ?
Ùeefo x – 4y = 0 leLee x + 2y = 24 nQ, lees
(2x+3y)/(2x–3y) keâe ceeve keäÙee nw?
(a) 9/5 (b) 11/5
(c) 13/7 (d) 9/7
22. If (x/a) + (y/b) = 3 and (x/b) – (y/a) = 9, then
what is the value of x/y ?
Ùeefo (x/a) + (y/b) = 3 leLee (x/b)–(y/a) = 9 nQ, lees
x/y keâe ceeve keäÙee nw?
(a) (b+3a)/(a–3b) (b) (a+3b)/(b–3a)
(c) (1+3a)/(a+3b) (d) (a+3b
2
)/(b–3a
2
)
23. In the given figure, OX, OY and OZ are
perpendicular bisectors of the three sides of the
triangle. If ?QPR = 65
0
and ?PQR = 60
0
, then
what is the value (in degrees) of ?QOR +
?POR ?
oer ieF& Deeke=âefle ceW, OX, OY leLee OZ ef$eYegpe keâer
leerveeW YegpeeDeeW kesâ uebye efÉYeepekeâ nQ~ Ùeefo ?QPR = 65
0
leLee ?PQR = 60
0
nes, lees ?QOR + ?POR keâe
ceeve (ef[«eer ceW) keäÙee nw?
(a) 250 (b) 180
(c) 210 (d) 125
Page 3
mebÙegòeâ mveelekeâ mlejerÙe hejer#ee, 2018
(Tier-II)
ieefCele (MATH)
JÙeeKÙee meefnle nue ØeMve he$e
Exam Date : 18-2-2018] [Time : 10 AM to 12 PM
1. How many three digit numbers are there in
which all the digits are odd ?
leerve DebkeâeW Jeeueer Ssmeer efkeâleveer mebKÙeeSB nQ efpemeceW meYeer
Debkeâ efJe<ece nQ?
(a) 100 (b) 125
(c) 500 (d) 250
2. If the sum of ten different positive integers is
100, then what is the greatest possible number
among these 10 numbers ?
Ùeefo ome efJeefYeVe Oeveelcekeâ hetCeeËkeâeW keâe Ùeesie 100 nw,
lees Fve 10 mebKÙeeDeeW ceW meyemes yeÌ[er mebYeeefJele mebKÙee
keäÙee nw?
(a) 45 (b) 91
(c) 55 (d) 64
3. If N = 0.369369369369..... and M =
0.531531531531...., then what is the value of
(1/N) + (1/M) ?
Ùeefo N = 0.369369369369.... leLee M =
0.531531531531.... nQ, lees (1/N) + (1/M) keâe ceeve
keäÙee nw?
(a) 11100/2419 (b) 111/100
(c) 1897/3162 (d) 2419/11100
4. If
0.216 + 0.008
A =
0.36 + 0.04 - 0.12
and
0.729 - 0.027
B =
0.81 + 0.09 + 0.27
then what is the value of (A
2
+ B
2
) ?
Ùeefo
0.216 + 0.008
A =
0.36 + 0.04 - 0.12
leLee
0.729 - 0.027
B =
0.81 + 0.09 + 0.27
nes, lees (A
2
+ B
2
) keâe ceeve
keäÙee nw?
(a) 0.8 (b) 1
(c) 1.4 (d) 2.2
5. If
1 1 1 1 1
A = + + + +
1× 2 1×4 2× 3 4× 7 3× 4
1
+ ...
7×10
upto 20 terms, then what is the value of A ?
Ùeefo
1 1 1 1 1
A = + + + +
1× 2 1× 4 2× 3 4× 7 3× 4
............
1
+
7×10
heoeW lekeâ nes, lees A keâe ceeve keäÙee
nw?
(a) 379/308 (b) 171/140
(c) 379/310 (d) 420/341
6. If 56 × 75 × 60 × 84 × 210 = 2
p
× 3
q
× 5
r
× 7
s
,
then what is the value of [(p+q)/s]+r ?
Ùeefo 56 × 75 × 60 × 84 × 210 = 2
p
× 3
q
× 5
r
× 7
s
.
nes, lees [(p+q)/s]+r keâe ceeve keäÙee nw?
(a) 6 (b) 8
(c) 12 (d) 10
7. If
1 1 47 47
A = 3 × 4 ÷ 34 - +
4 4 32 16
and
1 1 11
B = 2 + 5 ÷ 55 -
2 2 10
then what is the value of
A–B ?
Ùeefo
1 1 47 47
A = 3 × 4 ÷ 34 - +
4 4 32 16
leLee
1 1 11
B = 2 + 5 ÷ 55 -
2 2 10
nes, lees A – B keâe ceeve keäÙee
nw?
(a) 5/8 (b) 1
(c) 0 (d) 3/8
8. What is the sum of all natural numbers
between 100 and 400 which are divisible by 13?
100 leLee 400 kesâ ceOÙe meYeer Øeeke=âeflekeâ mebKÙeeDeeW keâe
Ùeesie keäÙee nw pees 13 mes efJeYeepÙe nw?
(a) 5681 (b) 5334
(c) 5434 (d) 5761
9. If the least common multiple of two numbers,
1728 and K is 5184, then how many values of K
are possible ?
Ùeefo oes mebKÙeeDeeW 1728 leLee K keâe ueIegòece meceeheJelÙe&
5184 nw, lees K kesâ efkeâleves ceeve mebYeJe nw?
(a) 11 (b) 8
(c) 6 (d) 7
10. If (3
33
+ 3
33
+ 3
33
) (2
33
+ 2
33
) = 6
x
then what is
the value of ?
Ùeefo (3
33
+ 3
33
+ 3
33
) (2
33
+ 2
33
) = 6
x
nes, lees x keâe
ceeve keäÙee nw?
(a) 34 (b) 35
(c) 33 (d) 33.5
11. Which of the following statement(s) is/are true?
efvecveefueefKele keâLeve/keâLeveeW ceW mes keâewve mee/mes mener
nw/nQ?
I. (65)
1/6
> (17)
1/4
> (12)
1/3
II. (17)
1/4
> (65)
1/6
> (12)
1/3
III. (12)
1/3
> (17)
1/4
> (65)
1/6
(a) Only I/kesâJeue I
(b) Only III/kesâJeue III
(c) Only II/kesâJeue II
(d) None of these/FveceW mes keâesF& veneR
12. If P = 7 + 4 3 and PQ =1, then what is the
value of (1/P
2
) + (1/Q
2
) ?
Ùeefo P = 7 + 4 3 leLee PQ = 1 nQ, lees (1/P
2
) +
(1+Q
2
) keâe ceeve keäÙee nw?
(a) 148 (b) 189
(c) 194 (d) 204
13. If
( )
x = 5 + 1 and
( )
y = 5 - 1 then what is
the value of (x
2
/y
2
) + (y
2
/x
2
) +
x y
4
y x
? ?
+
? ?
? ?
+ 6 ?
Ùeefo
( )
x = 5 + 1 leLee
( )
y = 5 - 1 nQ, lees (x
2
/y
2
)
+ (y
2
/x
2
) +
x y
4
y x
? ?
+
? ?
? ?
+ 6 keâe ceeve keäÙee nw?
(a) 31 (b) 23 5
(c) 27 5 (d) 25
14. If , x = 2 + 3 y = 2 - 3 and z = 1, then what is
the value of (x/yz) + (y/xz) + (z/xy) + 2 [(1/x) +
(1/y) + (1/z)] ?
Ùeefo , x = 2 + 3 y = 2 - 3 leLee z = 1 nQ, lees (x/yz)
+ (y/xz) + (z/xy) + 2 [(1/x) + (1/y) + (1/z)] keâe
ceeve keäÙee nw?
(a) 25 (b) 22
(c) 17 (d) 43
15. A root of equation ax
2
+ bx + c = 0 (where a, b
and c are rational numbers) is 5 + 3 3 . What
is the value of (a
2
+ b
2
+ c
2
)/(a+b+c) ?
meceerkeâjCe ax
2
+ bx + c = 0 (peneB a, b leLee c heefjcesÙe
mebKÙeeSB nw) keâe cetue 5 + 3 3 nw~ (a
2
+ b
2
+ c
2
)/(a + b
+ c) keâe ceeve keäÙee nw?
(a) 35/3 (b) 37/3
(c) –105/11 (d) –105/13
16. If x = (a/b) + (b/a), y = (b/c) + (c/b) and z = (c/a)
+ (a/c), then what is the value of xyz – x
2
– y
2
–
z
2
?
Ùeefo x = (a/b) + (b/a), y = (b/c) + (c/b) leLee z =
(c/a) + (a/c) nQ, lees xyz – x
2
– y
2
– z
2
keâe ceeve keäÙee
nw?
(a) –4 (b) 2
(c) –1 (d) –6
17. If [a+(1/a)]
2
– 2[a–(1/a)] = 12, then which of the
following is a value of 'a' ?
Ùeefo [a+(1/a)]
2
–2[a–(1/a)] = 12 nes, lees efvecveefueefKele
ceW mes keâewve mee 'a' keâe Skeâ ceeve nw?
(a) 8 3 - +
(b) 8 3 - -
(c) 8 5 - +
(d) None of these/FveceW mes keâesF& veneR
18. If x
2
– 4x + 1 = 0, then what is the value of
x
9
+ x
7
– 194x
5
– 194x
3
?
Ùeefo x
2
– 4x + 1 = 0 nes, lees x
9
+ x
7
– 194x
5
– 194x
3
keâe ceeve keäÙee nw?
(a) 4 (b) –4
(c) 1 (d) –1
19. If x+y= 3, then what is the value of x
3
+y
3
+9xy?
Ùeefo x+y= 3 nes, lees x
3
+y
3
+9xy keâe ceeve keäÙee nw?
(a) 15 (b) 81
(c) 27 (d) 9
20. A = (x
8
–1)/(x
4
+ 1) and B = (y
4
–1)/(y
2
+ 1). If x
= 2 and y = 9, the what is the value of A
2
+ 2AB
+ AB
2
?
A = (x
8
–1)/(x
4
+ 1) leLee B = (y
4
–1)/(y
2
+ 1) nQ~
Ùeefo x = 2 leLee y = 9 nQ, lees A
2
+ 2AB + AB
2
keâe
ceeve keäÙee nw?
(a) 96475 (b) 98625
(c) 92425 (d) 89125
21. If x–4y = 0 and x + 2y = 24, then what is the
value of (2x + 3y)/(2x–3y) ?
Ùeefo x – 4y = 0 leLee x + 2y = 24 nQ, lees
(2x+3y)/(2x–3y) keâe ceeve keäÙee nw?
(a) 9/5 (b) 11/5
(c) 13/7 (d) 9/7
22. If (x/a) + (y/b) = 3 and (x/b) – (y/a) = 9, then
what is the value of x/y ?
Ùeefo (x/a) + (y/b) = 3 leLee (x/b)–(y/a) = 9 nQ, lees
x/y keâe ceeve keäÙee nw?
(a) (b+3a)/(a–3b) (b) (a+3b)/(b–3a)
(c) (1+3a)/(a+3b) (d) (a+3b
2
)/(b–3a
2
)
23. In the given figure, OX, OY and OZ are
perpendicular bisectors of the three sides of the
triangle. If ?QPR = 65
0
and ?PQR = 60
0
, then
what is the value (in degrees) of ?QOR +
?POR ?
oer ieF& Deeke=âefle ceW, OX, OY leLee OZ ef$eYegpe keâer
leerveeW YegpeeDeeW kesâ uebye efÉYeepekeâ nQ~ Ùeefo ?QPR = 65
0
leLee ?PQR = 60
0
nes, lees ?QOR + ?POR keâe
ceeve (ef[«eer ceW) keäÙee nw?
(a) 250 (b) 180
(c) 210 (d) 125
24. In a triangle PQR, ?PQR = 90
0
, PQ = 10 cm
and PR = 26 cm, then what is the value (in cm)
of inradius of incircle ?
ef$eYegpe PQR ceW, ?PQR = 90
0
, PQ = 10 mes.ceer. leLee
PR = 26 mes.ceer. nQ, lees Deble: Je=òe keâer Deble:ef$epÙee keâe
ceeve (mes.ceer. ceW) keäÙee nw?
(a) 9 (b) 4
(c) 8 (d) 6
25. In the given figure, if
QR 14
=
XY 9
and PY = 18
cm, then what is the value (in cm) of PQ ?
oer ieF& Deeke=âefle ceW, Ùeefo
QR 14
=
XY 9
leLee PY = 18
mes.ceer. nes, lees PQ keâe ceeve (mes.ceer. ceW) keäÙee nw?
(a) 28 (b) 18
(c) 21 (d) 24
26. In a triangle PQR, PX, QY and RZ be altitudes
intersecting at O. If PO = 6 cm, PX = 8 cm and
QO = 4 cm, then what is the value (in cm) of
QY?
ef$eYegpe PQR ceW, PX, QY leLee RZ, O hej ØeefleÛÚso
keâjleer ngF& TBÛeeF&ÙeeB nQ~ Ùeefo PO = 6 mes.ceer., PX = 8
mes.ceer., leLee QO = 4 mes.ceer. nQ, lees QY keâe ceeve
(mes.ceer. ceW) keäÙee nw?
(a) 6.3 (b) 5.8
(c) 6 (d) 7
27. A line cuts two concentric circles. The lengths
of chords formed by that line on the two circles
are 4 cm and 16 cm. What is the difference (in
cm
2
) in squares of radii of two circles ?
Skeâ jsKee oes mebkesâefvõle Je=òeeW keâes keâešleer nw~ Gme jsKee
Éeje Je=òeeW hej yeveeF& ieF& peerJeeDeeW keâer uecyeeF& 4 mes.ceer.
leLee 16 mes.ceer. nQ~ oesveeW Je=òeeW keâer ef$epÙeeDeeW kesâ JeieeX keâe
Deblej (mes.ceer.
2
ceW) keäÙee nw?
(a) 240 (b) 120
(c) 60 (d) 90
28. In the given figure, a circle touches the sides of
the quadrilateral PQRS. The radius of the
circle is 9 cm. ?RSP = ?SRQ = 60
0
and ?PQR
= ?QPS = 120
0
. What is the perimeter (in cm)
of the quadrilateral ?
oer ieF& Deeke=âefle ceW, Skeâ Je=òe ÛelegYeg&pe PQRS keâer
YegpeeDeeW keâes mheMe& keâj jne nw~ Je=òe keâer ef$epÙee 9 mes.ceer.
nw~ ?RSP = ?SRQ = 60
0
leLee ?PQR = ?QPS =
120
0
nw~ ÛelegYeg&pe keâe heefjceehe (mes.ceer. ceW) keäÙee nw?
(a) 36 3 (b) 24 3
(c) 48 3 (d) 32
29. In the given figure, from the point P two
tangents PA and PB are drawn to a circle with
centre O and radius 5 cm. From the point O,
OC and OD are drawn parallel to PA and PB
respectively. If the length of the chord AB is 5
cm, then what is the value (in degrees) of
?COD ?
oer ieF& Deeke=âefle ceW, efyevog P mes Skeâ Je=òe efpemekeâe kesâvõ
O nw leLee ef$epÙee 5 mes.ceer. nw, hej PA leLee PB oes mheMe&
jsKeeSB KeeRÛeer ieF& nw~ efyevog O mes OC leLee OD keâes
›eâceMe: PA leLee PB kesâ meceeveeblej KeeRÛee ieÙee nw~ Ùeefo
peerJee AB keâer uebyeeF& 5 mes.ceer. nw, lees ?COD keâe ceeve
(ef[«eer ceW) keäÙee nw?
(a) 90 (b) 120
(c) 150 (d) 135
30. In the given figure, AB is a diameter of the
circle with centre O and XY is the tangent at a
point C. If ?ACX = 35
0
, then what is the value
(in degrees) of ?CAB ?
oer ieF& Deeke=âefle ceW, AB Skeâ Je=òe efpemekeâe kesâvõ O nw,
keâe JÙeeme nw leLee XY, efyevog C hej Skeâ mheMe& jsKee nw~
Ùeefo ?ACX = 35
0
nw, lees ?CAB keâe ceeve (ef[«eer ceW)
keäÙee nw?
(a) 45 (b) 35
(c) 55 (d) 65
Page 4
mebÙegòeâ mveelekeâ mlejerÙe hejer#ee, 2018
(Tier-II)
ieefCele (MATH)
JÙeeKÙee meefnle nue ØeMve he$e
Exam Date : 18-2-2018] [Time : 10 AM to 12 PM
1. How many three digit numbers are there in
which all the digits are odd ?
leerve DebkeâeW Jeeueer Ssmeer efkeâleveer mebKÙeeSB nQ efpemeceW meYeer
Debkeâ efJe<ece nQ?
(a) 100 (b) 125
(c) 500 (d) 250
2. If the sum of ten different positive integers is
100, then what is the greatest possible number
among these 10 numbers ?
Ùeefo ome efJeefYeVe Oeveelcekeâ hetCeeËkeâeW keâe Ùeesie 100 nw,
lees Fve 10 mebKÙeeDeeW ceW meyemes yeÌ[er mebYeeefJele mebKÙee
keäÙee nw?
(a) 45 (b) 91
(c) 55 (d) 64
3. If N = 0.369369369369..... and M =
0.531531531531...., then what is the value of
(1/N) + (1/M) ?
Ùeefo N = 0.369369369369.... leLee M =
0.531531531531.... nQ, lees (1/N) + (1/M) keâe ceeve
keäÙee nw?
(a) 11100/2419 (b) 111/100
(c) 1897/3162 (d) 2419/11100
4. If
0.216 + 0.008
A =
0.36 + 0.04 - 0.12
and
0.729 - 0.027
B =
0.81 + 0.09 + 0.27
then what is the value of (A
2
+ B
2
) ?
Ùeefo
0.216 + 0.008
A =
0.36 + 0.04 - 0.12
leLee
0.729 - 0.027
B =
0.81 + 0.09 + 0.27
nes, lees (A
2
+ B
2
) keâe ceeve
keäÙee nw?
(a) 0.8 (b) 1
(c) 1.4 (d) 2.2
5. If
1 1 1 1 1
A = + + + +
1× 2 1×4 2× 3 4× 7 3× 4
1
+ ...
7×10
upto 20 terms, then what is the value of A ?
Ùeefo
1 1 1 1 1
A = + + + +
1× 2 1× 4 2× 3 4× 7 3× 4
............
1
+
7×10
heoeW lekeâ nes, lees A keâe ceeve keäÙee
nw?
(a) 379/308 (b) 171/140
(c) 379/310 (d) 420/341
6. If 56 × 75 × 60 × 84 × 210 = 2
p
× 3
q
× 5
r
× 7
s
,
then what is the value of [(p+q)/s]+r ?
Ùeefo 56 × 75 × 60 × 84 × 210 = 2
p
× 3
q
× 5
r
× 7
s
.
nes, lees [(p+q)/s]+r keâe ceeve keäÙee nw?
(a) 6 (b) 8
(c) 12 (d) 10
7. If
1 1 47 47
A = 3 × 4 ÷ 34 - +
4 4 32 16
and
1 1 11
B = 2 + 5 ÷ 55 -
2 2 10
then what is the value of
A–B ?
Ùeefo
1 1 47 47
A = 3 × 4 ÷ 34 - +
4 4 32 16
leLee
1 1 11
B = 2 + 5 ÷ 55 -
2 2 10
nes, lees A – B keâe ceeve keäÙee
nw?
(a) 5/8 (b) 1
(c) 0 (d) 3/8
8. What is the sum of all natural numbers
between 100 and 400 which are divisible by 13?
100 leLee 400 kesâ ceOÙe meYeer Øeeke=âeflekeâ mebKÙeeDeeW keâe
Ùeesie keäÙee nw pees 13 mes efJeYeepÙe nw?
(a) 5681 (b) 5334
(c) 5434 (d) 5761
9. If the least common multiple of two numbers,
1728 and K is 5184, then how many values of K
are possible ?
Ùeefo oes mebKÙeeDeeW 1728 leLee K keâe ueIegòece meceeheJelÙe&
5184 nw, lees K kesâ efkeâleves ceeve mebYeJe nw?
(a) 11 (b) 8
(c) 6 (d) 7
10. If (3
33
+ 3
33
+ 3
33
) (2
33
+ 2
33
) = 6
x
then what is
the value of ?
Ùeefo (3
33
+ 3
33
+ 3
33
) (2
33
+ 2
33
) = 6
x
nes, lees x keâe
ceeve keäÙee nw?
(a) 34 (b) 35
(c) 33 (d) 33.5
11. Which of the following statement(s) is/are true?
efvecveefueefKele keâLeve/keâLeveeW ceW mes keâewve mee/mes mener
nw/nQ?
I. (65)
1/6
> (17)
1/4
> (12)
1/3
II. (17)
1/4
> (65)
1/6
> (12)
1/3
III. (12)
1/3
> (17)
1/4
> (65)
1/6
(a) Only I/kesâJeue I
(b) Only III/kesâJeue III
(c) Only II/kesâJeue II
(d) None of these/FveceW mes keâesF& veneR
12. If P = 7 + 4 3 and PQ =1, then what is the
value of (1/P
2
) + (1/Q
2
) ?
Ùeefo P = 7 + 4 3 leLee PQ = 1 nQ, lees (1/P
2
) +
(1+Q
2
) keâe ceeve keäÙee nw?
(a) 148 (b) 189
(c) 194 (d) 204
13. If
( )
x = 5 + 1 and
( )
y = 5 - 1 then what is
the value of (x
2
/y
2
) + (y
2
/x
2
) +
x y
4
y x
? ?
+
? ?
? ?
+ 6 ?
Ùeefo
( )
x = 5 + 1 leLee
( )
y = 5 - 1 nQ, lees (x
2
/y
2
)
+ (y
2
/x
2
) +
x y
4
y x
? ?
+
? ?
? ?
+ 6 keâe ceeve keäÙee nw?
(a) 31 (b) 23 5
(c) 27 5 (d) 25
14. If , x = 2 + 3 y = 2 - 3 and z = 1, then what is
the value of (x/yz) + (y/xz) + (z/xy) + 2 [(1/x) +
(1/y) + (1/z)] ?
Ùeefo , x = 2 + 3 y = 2 - 3 leLee z = 1 nQ, lees (x/yz)
+ (y/xz) + (z/xy) + 2 [(1/x) + (1/y) + (1/z)] keâe
ceeve keäÙee nw?
(a) 25 (b) 22
(c) 17 (d) 43
15. A root of equation ax
2
+ bx + c = 0 (where a, b
and c are rational numbers) is 5 + 3 3 . What
is the value of (a
2
+ b
2
+ c
2
)/(a+b+c) ?
meceerkeâjCe ax
2
+ bx + c = 0 (peneB a, b leLee c heefjcesÙe
mebKÙeeSB nw) keâe cetue 5 + 3 3 nw~ (a
2
+ b
2
+ c
2
)/(a + b
+ c) keâe ceeve keäÙee nw?
(a) 35/3 (b) 37/3
(c) –105/11 (d) –105/13
16. If x = (a/b) + (b/a), y = (b/c) + (c/b) and z = (c/a)
+ (a/c), then what is the value of xyz – x
2
– y
2
–
z
2
?
Ùeefo x = (a/b) + (b/a), y = (b/c) + (c/b) leLee z =
(c/a) + (a/c) nQ, lees xyz – x
2
– y
2
– z
2
keâe ceeve keäÙee
nw?
(a) –4 (b) 2
(c) –1 (d) –6
17. If [a+(1/a)]
2
– 2[a–(1/a)] = 12, then which of the
following is a value of 'a' ?
Ùeefo [a+(1/a)]
2
–2[a–(1/a)] = 12 nes, lees efvecveefueefKele
ceW mes keâewve mee 'a' keâe Skeâ ceeve nw?
(a) 8 3 - +
(b) 8 3 - -
(c) 8 5 - +
(d) None of these/FveceW mes keâesF& veneR
18. If x
2
– 4x + 1 = 0, then what is the value of
x
9
+ x
7
– 194x
5
– 194x
3
?
Ùeefo x
2
– 4x + 1 = 0 nes, lees x
9
+ x
7
– 194x
5
– 194x
3
keâe ceeve keäÙee nw?
(a) 4 (b) –4
(c) 1 (d) –1
19. If x+y= 3, then what is the value of x
3
+y
3
+9xy?
Ùeefo x+y= 3 nes, lees x
3
+y
3
+9xy keâe ceeve keäÙee nw?
(a) 15 (b) 81
(c) 27 (d) 9
20. A = (x
8
–1)/(x
4
+ 1) and B = (y
4
–1)/(y
2
+ 1). If x
= 2 and y = 9, the what is the value of A
2
+ 2AB
+ AB
2
?
A = (x
8
–1)/(x
4
+ 1) leLee B = (y
4
–1)/(y
2
+ 1) nQ~
Ùeefo x = 2 leLee y = 9 nQ, lees A
2
+ 2AB + AB
2
keâe
ceeve keäÙee nw?
(a) 96475 (b) 98625
(c) 92425 (d) 89125
21. If x–4y = 0 and x + 2y = 24, then what is the
value of (2x + 3y)/(2x–3y) ?
Ùeefo x – 4y = 0 leLee x + 2y = 24 nQ, lees
(2x+3y)/(2x–3y) keâe ceeve keäÙee nw?
(a) 9/5 (b) 11/5
(c) 13/7 (d) 9/7
22. If (x/a) + (y/b) = 3 and (x/b) – (y/a) = 9, then
what is the value of x/y ?
Ùeefo (x/a) + (y/b) = 3 leLee (x/b)–(y/a) = 9 nQ, lees
x/y keâe ceeve keäÙee nw?
(a) (b+3a)/(a–3b) (b) (a+3b)/(b–3a)
(c) (1+3a)/(a+3b) (d) (a+3b
2
)/(b–3a
2
)
23. In the given figure, OX, OY and OZ are
perpendicular bisectors of the three sides of the
triangle. If ?QPR = 65
0
and ?PQR = 60
0
, then
what is the value (in degrees) of ?QOR +
?POR ?
oer ieF& Deeke=âefle ceW, OX, OY leLee OZ ef$eYegpe keâer
leerveeW YegpeeDeeW kesâ uebye efÉYeepekeâ nQ~ Ùeefo ?QPR = 65
0
leLee ?PQR = 60
0
nes, lees ?QOR + ?POR keâe
ceeve (ef[«eer ceW) keäÙee nw?
(a) 250 (b) 180
(c) 210 (d) 125
24. In a triangle PQR, ?PQR = 90
0
, PQ = 10 cm
and PR = 26 cm, then what is the value (in cm)
of inradius of incircle ?
ef$eYegpe PQR ceW, ?PQR = 90
0
, PQ = 10 mes.ceer. leLee
PR = 26 mes.ceer. nQ, lees Deble: Je=òe keâer Deble:ef$epÙee keâe
ceeve (mes.ceer. ceW) keäÙee nw?
(a) 9 (b) 4
(c) 8 (d) 6
25. In the given figure, if
QR 14
=
XY 9
and PY = 18
cm, then what is the value (in cm) of PQ ?
oer ieF& Deeke=âefle ceW, Ùeefo
QR 14
=
XY 9
leLee PY = 18
mes.ceer. nes, lees PQ keâe ceeve (mes.ceer. ceW) keäÙee nw?
(a) 28 (b) 18
(c) 21 (d) 24
26. In a triangle PQR, PX, QY and RZ be altitudes
intersecting at O. If PO = 6 cm, PX = 8 cm and
QO = 4 cm, then what is the value (in cm) of
QY?
ef$eYegpe PQR ceW, PX, QY leLee RZ, O hej ØeefleÛÚso
keâjleer ngF& TBÛeeF&ÙeeB nQ~ Ùeefo PO = 6 mes.ceer., PX = 8
mes.ceer., leLee QO = 4 mes.ceer. nQ, lees QY keâe ceeve
(mes.ceer. ceW) keäÙee nw?
(a) 6.3 (b) 5.8
(c) 6 (d) 7
27. A line cuts two concentric circles. The lengths
of chords formed by that line on the two circles
are 4 cm and 16 cm. What is the difference (in
cm
2
) in squares of radii of two circles ?
Skeâ jsKee oes mebkesâefvõle Je=òeeW keâes keâešleer nw~ Gme jsKee
Éeje Je=òeeW hej yeveeF& ieF& peerJeeDeeW keâer uecyeeF& 4 mes.ceer.
leLee 16 mes.ceer. nQ~ oesveeW Je=òeeW keâer ef$epÙeeDeeW kesâ JeieeX keâe
Deblej (mes.ceer.
2
ceW) keäÙee nw?
(a) 240 (b) 120
(c) 60 (d) 90
28. In the given figure, a circle touches the sides of
the quadrilateral PQRS. The radius of the
circle is 9 cm. ?RSP = ?SRQ = 60
0
and ?PQR
= ?QPS = 120
0
. What is the perimeter (in cm)
of the quadrilateral ?
oer ieF& Deeke=âefle ceW, Skeâ Je=òe ÛelegYeg&pe PQRS keâer
YegpeeDeeW keâes mheMe& keâj jne nw~ Je=òe keâer ef$epÙee 9 mes.ceer.
nw~ ?RSP = ?SRQ = 60
0
leLee ?PQR = ?QPS =
120
0
nw~ ÛelegYeg&pe keâe heefjceehe (mes.ceer. ceW) keäÙee nw?
(a) 36 3 (b) 24 3
(c) 48 3 (d) 32
29. In the given figure, from the point P two
tangents PA and PB are drawn to a circle with
centre O and radius 5 cm. From the point O,
OC and OD are drawn parallel to PA and PB
respectively. If the length of the chord AB is 5
cm, then what is the value (in degrees) of
?COD ?
oer ieF& Deeke=âefle ceW, efyevog P mes Skeâ Je=òe efpemekeâe kesâvõ
O nw leLee ef$epÙee 5 mes.ceer. nw, hej PA leLee PB oes mheMe&
jsKeeSB KeeRÛeer ieF& nw~ efyevog O mes OC leLee OD keâes
›eâceMe: PA leLee PB kesâ meceeveeblej KeeRÛee ieÙee nw~ Ùeefo
peerJee AB keâer uebyeeF& 5 mes.ceer. nw, lees ?COD keâe ceeve
(ef[«eer ceW) keäÙee nw?
(a) 90 (b) 120
(c) 150 (d) 135
30. In the given figure, AB is a diameter of the
circle with centre O and XY is the tangent at a
point C. If ?ACX = 35
0
, then what is the value
(in degrees) of ?CAB ?
oer ieF& Deeke=âefle ceW, AB Skeâ Je=òe efpemekeâe kesâvõ O nw,
keâe JÙeeme nw leLee XY, efyevog C hej Skeâ mheMe& jsKee nw~
Ùeefo ?ACX = 35
0
nw, lees ?CAB keâe ceeve (ef[«eer ceW)
keäÙee nw?
(a) 45 (b) 35
(c) 55 (d) 65
31. In the given figure, PQ is a diameter of the
Semicircle PABQ and O is its center. ?AOB =
64
0
. BP cuts AQ at X. What is the value (in
degrees) of ?AXP ?
oer ieF& Deeke=âefle ceW, PQ, DeOe&Je=òe PABQ keâe JÙeeme
nw, leLee O Fmekeâe kesâvõ nw~ ?AOB = 64
0
nw~ BP,
AQ keâes X hej keâešlee nw~ ?AXP keâe ceeve (ef[«eer ceW)
keäÙee nw?
(a) 36 (b) 32
(c) 58 (d) 54
32. In the given figure, E and F are the centers of
two identical circles. What is the ratio of area
of triangle AOB to the area of triangle DOC ?
oer ieF& Deeke=âefle ceW, E leLee F oes mece™he Je=òeeW kesâ kesâvõ
nQ~ ef$eYegpe AOB kesâ #es$eHeâue keâe ef$eYegpe DOC kesâ
#es$eHeâue mes keäÙee Devegheele nw?
(a) 1 : 3 (b) 1 : 9
(c) 1 : 8 (d) 1 : 4
33. In the given figure, in a right angle triangle
ABC, AB = 12 cm and AC = 15 cm. A square is
inscribed in the triangle. One of the vertices of
square coincides with the vertex of triangle.
What is the maximum possible area (in cm
2
) of
the square ?
oer ieF& Deeke=âefle ceW, Skeâ mecekeâesCe ef$eYegpe ABC ceW, AB
= 12 mes.ceer. leLee AC = 15 mes.ceer. nQ~ ef$eYegpe kesâ Yeerlej
Skeâ Jeie& yeveeÙee ieÙee nw~ Jeie& kesâ Meer<eeX ceW mes Skeâ ef$eYegpe
kesâ Meer<e& mes mheMe& keâjlee nw~ Jeie& keâe DeefOekeâlece mebYeJe
#es$eHeâue (mes.ceer.
2
ceW) keäÙee nw?
(a) 1296/49 (b) 25
(c) 1225/36 (d) 1225/64
34. In the given figure, PQRS is a square of side 8
cm. ?PQO = 60
0
. What is the area (in cm
2
) of
the triangle POQ ?
oer ieF& Deeke=âefle ceW, PQRS 8 mes.ceer. Yegpee Jeeuee Skeâ
Jeie& nw~ ?PQO = 60
0
nw~ ef$eYegpe POQ keâe #es$eHeâue
(mes.ceer.
2
ceW) keäÙee nw?
(a) 32 3 (b)
( )
24 3 1
? ?
-
? ?
(c)
( )
48 3 1
? ?
-
? ?
(d)
( )
16 3 3
? ?
-
? ?
35. In the given figure, two squares of sides 8 cm
and 20 cm are given. What is the area (in cm
2
)
of the shaded part ?
oer ieF& Deeke=âefle ceW, 8 mes.ceer. leLee 20 mes.ceer. Yegpee Jeeues
oes Jeie& efoÙes ieÙes nQ~ ÚeÙeebefkeâle Yeeie keâe #es$eHeâue
(mes.ceer.
2
ceW) keäÙee nw?
(a) 120/7 (b) 160/7
(c) 180/7 (d) 240/13
36. The area of a regular hexagon is equal to the
area of the square. What is the ratio of the
perimeter of the regular hexagon to the
perimeter of square ?
mece <ešdYegpe keâe #es$eHeâue Jeie& kesâ #es$eHeâue kesâ yejeyej nw~
mece <ešdYegpe kesâ heefjceehe keâe Jeie& kesâ heefjceehe mes keäÙee
Devegheele nw?
(a) 6 3 : 3 6 (b) 2 3 : 6 2
(c) 6 3 : 2 (d) 6 3 : 2 3
37. In the given figure, ABCDEF is a regular
hexagon of side 12 cm. P, Q and R are the mid
points of the sides AB, CD and EF respectively.
What is the area (in cm
2
) of triangle PQR ?
oer ieF& Deeke=âefle ceW, ABCDEF Skeâ mece <ešdYegpe nw
efpemekeâer Yegpee 12 mes.ceer. nw~ P, Q leLee R ›eâceMe:
YegpeeDeeW AB, CD leLee EF kesâ ceOÙe efyevog nw~ ef$eYegpe
PQR keâe #es$eHeâue (mes.ceer.
2
ceW) keäÙee nw?
Page 5
mebÙegòeâ mveelekeâ mlejerÙe hejer#ee, 2018
(Tier-II)
ieefCele (MATH)
JÙeeKÙee meefnle nue ØeMve he$e
Exam Date : 18-2-2018] [Time : 10 AM to 12 PM
1. How many three digit numbers are there in
which all the digits are odd ?
leerve DebkeâeW Jeeueer Ssmeer efkeâleveer mebKÙeeSB nQ efpemeceW meYeer
Debkeâ efJe<ece nQ?
(a) 100 (b) 125
(c) 500 (d) 250
2. If the sum of ten different positive integers is
100, then what is the greatest possible number
among these 10 numbers ?
Ùeefo ome efJeefYeVe Oeveelcekeâ hetCeeËkeâeW keâe Ùeesie 100 nw,
lees Fve 10 mebKÙeeDeeW ceW meyemes yeÌ[er mebYeeefJele mebKÙee
keäÙee nw?
(a) 45 (b) 91
(c) 55 (d) 64
3. If N = 0.369369369369..... and M =
0.531531531531...., then what is the value of
(1/N) + (1/M) ?
Ùeefo N = 0.369369369369.... leLee M =
0.531531531531.... nQ, lees (1/N) + (1/M) keâe ceeve
keäÙee nw?
(a) 11100/2419 (b) 111/100
(c) 1897/3162 (d) 2419/11100
4. If
0.216 + 0.008
A =
0.36 + 0.04 - 0.12
and
0.729 - 0.027
B =
0.81 + 0.09 + 0.27
then what is the value of (A
2
+ B
2
) ?
Ùeefo
0.216 + 0.008
A =
0.36 + 0.04 - 0.12
leLee
0.729 - 0.027
B =
0.81 + 0.09 + 0.27
nes, lees (A
2
+ B
2
) keâe ceeve
keäÙee nw?
(a) 0.8 (b) 1
(c) 1.4 (d) 2.2
5. If
1 1 1 1 1
A = + + + +
1× 2 1×4 2× 3 4× 7 3× 4
1
+ ...
7×10
upto 20 terms, then what is the value of A ?
Ùeefo
1 1 1 1 1
A = + + + +
1× 2 1× 4 2× 3 4× 7 3× 4
............
1
+
7×10
heoeW lekeâ nes, lees A keâe ceeve keäÙee
nw?
(a) 379/308 (b) 171/140
(c) 379/310 (d) 420/341
6. If 56 × 75 × 60 × 84 × 210 = 2
p
× 3
q
× 5
r
× 7
s
,
then what is the value of [(p+q)/s]+r ?
Ùeefo 56 × 75 × 60 × 84 × 210 = 2
p
× 3
q
× 5
r
× 7
s
.
nes, lees [(p+q)/s]+r keâe ceeve keäÙee nw?
(a) 6 (b) 8
(c) 12 (d) 10
7. If
1 1 47 47
A = 3 × 4 ÷ 34 - +
4 4 32 16
and
1 1 11
B = 2 + 5 ÷ 55 -
2 2 10
then what is the value of
A–B ?
Ùeefo
1 1 47 47
A = 3 × 4 ÷ 34 - +
4 4 32 16
leLee
1 1 11
B = 2 + 5 ÷ 55 -
2 2 10
nes, lees A – B keâe ceeve keäÙee
nw?
(a) 5/8 (b) 1
(c) 0 (d) 3/8
8. What is the sum of all natural numbers
between 100 and 400 which are divisible by 13?
100 leLee 400 kesâ ceOÙe meYeer Øeeke=âeflekeâ mebKÙeeDeeW keâe
Ùeesie keäÙee nw pees 13 mes efJeYeepÙe nw?
(a) 5681 (b) 5334
(c) 5434 (d) 5761
9. If the least common multiple of two numbers,
1728 and K is 5184, then how many values of K
are possible ?
Ùeefo oes mebKÙeeDeeW 1728 leLee K keâe ueIegòece meceeheJelÙe&
5184 nw, lees K kesâ efkeâleves ceeve mebYeJe nw?
(a) 11 (b) 8
(c) 6 (d) 7
10. If (3
33
+ 3
33
+ 3
33
) (2
33
+ 2
33
) = 6
x
then what is
the value of ?
Ùeefo (3
33
+ 3
33
+ 3
33
) (2
33
+ 2
33
) = 6
x
nes, lees x keâe
ceeve keäÙee nw?
(a) 34 (b) 35
(c) 33 (d) 33.5
11. Which of the following statement(s) is/are true?
efvecveefueefKele keâLeve/keâLeveeW ceW mes keâewve mee/mes mener
nw/nQ?
I. (65)
1/6
> (17)
1/4
> (12)
1/3
II. (17)
1/4
> (65)
1/6
> (12)
1/3
III. (12)
1/3
> (17)
1/4
> (65)
1/6
(a) Only I/kesâJeue I
(b) Only III/kesâJeue III
(c) Only II/kesâJeue II
(d) None of these/FveceW mes keâesF& veneR
12. If P = 7 + 4 3 and PQ =1, then what is the
value of (1/P
2
) + (1/Q
2
) ?
Ùeefo P = 7 + 4 3 leLee PQ = 1 nQ, lees (1/P
2
) +
(1+Q
2
) keâe ceeve keäÙee nw?
(a) 148 (b) 189
(c) 194 (d) 204
13. If
( )
x = 5 + 1 and
( )
y = 5 - 1 then what is
the value of (x
2
/y
2
) + (y
2
/x
2
) +
x y
4
y x
? ?
+
? ?
? ?
+ 6 ?
Ùeefo
( )
x = 5 + 1 leLee
( )
y = 5 - 1 nQ, lees (x
2
/y
2
)
+ (y
2
/x
2
) +
x y
4
y x
? ?
+
? ?
? ?
+ 6 keâe ceeve keäÙee nw?
(a) 31 (b) 23 5
(c) 27 5 (d) 25
14. If , x = 2 + 3 y = 2 - 3 and z = 1, then what is
the value of (x/yz) + (y/xz) + (z/xy) + 2 [(1/x) +
(1/y) + (1/z)] ?
Ùeefo , x = 2 + 3 y = 2 - 3 leLee z = 1 nQ, lees (x/yz)
+ (y/xz) + (z/xy) + 2 [(1/x) + (1/y) + (1/z)] keâe
ceeve keäÙee nw?
(a) 25 (b) 22
(c) 17 (d) 43
15. A root of equation ax
2
+ bx + c = 0 (where a, b
and c are rational numbers) is 5 + 3 3 . What
is the value of (a
2
+ b
2
+ c
2
)/(a+b+c) ?
meceerkeâjCe ax
2
+ bx + c = 0 (peneB a, b leLee c heefjcesÙe
mebKÙeeSB nw) keâe cetue 5 + 3 3 nw~ (a
2
+ b
2
+ c
2
)/(a + b
+ c) keâe ceeve keäÙee nw?
(a) 35/3 (b) 37/3
(c) –105/11 (d) –105/13
16. If x = (a/b) + (b/a), y = (b/c) + (c/b) and z = (c/a)
+ (a/c), then what is the value of xyz – x
2
– y
2
–
z
2
?
Ùeefo x = (a/b) + (b/a), y = (b/c) + (c/b) leLee z =
(c/a) + (a/c) nQ, lees xyz – x
2
– y
2
– z
2
keâe ceeve keäÙee
nw?
(a) –4 (b) 2
(c) –1 (d) –6
17. If [a+(1/a)]
2
– 2[a–(1/a)] = 12, then which of the
following is a value of 'a' ?
Ùeefo [a+(1/a)]
2
–2[a–(1/a)] = 12 nes, lees efvecveefueefKele
ceW mes keâewve mee 'a' keâe Skeâ ceeve nw?
(a) 8 3 - +
(b) 8 3 - -
(c) 8 5 - +
(d) None of these/FveceW mes keâesF& veneR
18. If x
2
– 4x + 1 = 0, then what is the value of
x
9
+ x
7
– 194x
5
– 194x
3
?
Ùeefo x
2
– 4x + 1 = 0 nes, lees x
9
+ x
7
– 194x
5
– 194x
3
keâe ceeve keäÙee nw?
(a) 4 (b) –4
(c) 1 (d) –1
19. If x+y= 3, then what is the value of x
3
+y
3
+9xy?
Ùeefo x+y= 3 nes, lees x
3
+y
3
+9xy keâe ceeve keäÙee nw?
(a) 15 (b) 81
(c) 27 (d) 9
20. A = (x
8
–1)/(x
4
+ 1) and B = (y
4
–1)/(y
2
+ 1). If x
= 2 and y = 9, the what is the value of A
2
+ 2AB
+ AB
2
?
A = (x
8
–1)/(x
4
+ 1) leLee B = (y
4
–1)/(y
2
+ 1) nQ~
Ùeefo x = 2 leLee y = 9 nQ, lees A
2
+ 2AB + AB
2
keâe
ceeve keäÙee nw?
(a) 96475 (b) 98625
(c) 92425 (d) 89125
21. If x–4y = 0 and x + 2y = 24, then what is the
value of (2x + 3y)/(2x–3y) ?
Ùeefo x – 4y = 0 leLee x + 2y = 24 nQ, lees
(2x+3y)/(2x–3y) keâe ceeve keäÙee nw?
(a) 9/5 (b) 11/5
(c) 13/7 (d) 9/7
22. If (x/a) + (y/b) = 3 and (x/b) – (y/a) = 9, then
what is the value of x/y ?
Ùeefo (x/a) + (y/b) = 3 leLee (x/b)–(y/a) = 9 nQ, lees
x/y keâe ceeve keäÙee nw?
(a) (b+3a)/(a–3b) (b) (a+3b)/(b–3a)
(c) (1+3a)/(a+3b) (d) (a+3b
2
)/(b–3a
2
)
23. In the given figure, OX, OY and OZ are
perpendicular bisectors of the three sides of the
triangle. If ?QPR = 65
0
and ?PQR = 60
0
, then
what is the value (in degrees) of ?QOR +
?POR ?
oer ieF& Deeke=âefle ceW, OX, OY leLee OZ ef$eYegpe keâer
leerveeW YegpeeDeeW kesâ uebye efÉYeepekeâ nQ~ Ùeefo ?QPR = 65
0
leLee ?PQR = 60
0
nes, lees ?QOR + ?POR keâe
ceeve (ef[«eer ceW) keäÙee nw?
(a) 250 (b) 180
(c) 210 (d) 125
24. In a triangle PQR, ?PQR = 90
0
, PQ = 10 cm
and PR = 26 cm, then what is the value (in cm)
of inradius of incircle ?
ef$eYegpe PQR ceW, ?PQR = 90
0
, PQ = 10 mes.ceer. leLee
PR = 26 mes.ceer. nQ, lees Deble: Je=òe keâer Deble:ef$epÙee keâe
ceeve (mes.ceer. ceW) keäÙee nw?
(a) 9 (b) 4
(c) 8 (d) 6
25. In the given figure, if
QR 14
=
XY 9
and PY = 18
cm, then what is the value (in cm) of PQ ?
oer ieF& Deeke=âefle ceW, Ùeefo
QR 14
=
XY 9
leLee PY = 18
mes.ceer. nes, lees PQ keâe ceeve (mes.ceer. ceW) keäÙee nw?
(a) 28 (b) 18
(c) 21 (d) 24
26. In a triangle PQR, PX, QY and RZ be altitudes
intersecting at O. If PO = 6 cm, PX = 8 cm and
QO = 4 cm, then what is the value (in cm) of
QY?
ef$eYegpe PQR ceW, PX, QY leLee RZ, O hej ØeefleÛÚso
keâjleer ngF& TBÛeeF&ÙeeB nQ~ Ùeefo PO = 6 mes.ceer., PX = 8
mes.ceer., leLee QO = 4 mes.ceer. nQ, lees QY keâe ceeve
(mes.ceer. ceW) keäÙee nw?
(a) 6.3 (b) 5.8
(c) 6 (d) 7
27. A line cuts two concentric circles. The lengths
of chords formed by that line on the two circles
are 4 cm and 16 cm. What is the difference (in
cm
2
) in squares of radii of two circles ?
Skeâ jsKee oes mebkesâefvõle Je=òeeW keâes keâešleer nw~ Gme jsKee
Éeje Je=òeeW hej yeveeF& ieF& peerJeeDeeW keâer uecyeeF& 4 mes.ceer.
leLee 16 mes.ceer. nQ~ oesveeW Je=òeeW keâer ef$epÙeeDeeW kesâ JeieeX keâe
Deblej (mes.ceer.
2
ceW) keäÙee nw?
(a) 240 (b) 120
(c) 60 (d) 90
28. In the given figure, a circle touches the sides of
the quadrilateral PQRS. The radius of the
circle is 9 cm. ?RSP = ?SRQ = 60
0
and ?PQR
= ?QPS = 120
0
. What is the perimeter (in cm)
of the quadrilateral ?
oer ieF& Deeke=âefle ceW, Skeâ Je=òe ÛelegYeg&pe PQRS keâer
YegpeeDeeW keâes mheMe& keâj jne nw~ Je=òe keâer ef$epÙee 9 mes.ceer.
nw~ ?RSP = ?SRQ = 60
0
leLee ?PQR = ?QPS =
120
0
nw~ ÛelegYeg&pe keâe heefjceehe (mes.ceer. ceW) keäÙee nw?
(a) 36 3 (b) 24 3
(c) 48 3 (d) 32
29. In the given figure, from the point P two
tangents PA and PB are drawn to a circle with
centre O and radius 5 cm. From the point O,
OC and OD are drawn parallel to PA and PB
respectively. If the length of the chord AB is 5
cm, then what is the value (in degrees) of
?COD ?
oer ieF& Deeke=âefle ceW, efyevog P mes Skeâ Je=òe efpemekeâe kesâvõ
O nw leLee ef$epÙee 5 mes.ceer. nw, hej PA leLee PB oes mheMe&
jsKeeSB KeeRÛeer ieF& nw~ efyevog O mes OC leLee OD keâes
›eâceMe: PA leLee PB kesâ meceeveeblej KeeRÛee ieÙee nw~ Ùeefo
peerJee AB keâer uebyeeF& 5 mes.ceer. nw, lees ?COD keâe ceeve
(ef[«eer ceW) keäÙee nw?
(a) 90 (b) 120
(c) 150 (d) 135
30. In the given figure, AB is a diameter of the
circle with centre O and XY is the tangent at a
point C. If ?ACX = 35
0
, then what is the value
(in degrees) of ?CAB ?
oer ieF& Deeke=âefle ceW, AB Skeâ Je=òe efpemekeâe kesâvõ O nw,
keâe JÙeeme nw leLee XY, efyevog C hej Skeâ mheMe& jsKee nw~
Ùeefo ?ACX = 35
0
nw, lees ?CAB keâe ceeve (ef[«eer ceW)
keäÙee nw?
(a) 45 (b) 35
(c) 55 (d) 65
31. In the given figure, PQ is a diameter of the
Semicircle PABQ and O is its center. ?AOB =
64
0
. BP cuts AQ at X. What is the value (in
degrees) of ?AXP ?
oer ieF& Deeke=âefle ceW, PQ, DeOe&Je=òe PABQ keâe JÙeeme
nw, leLee O Fmekeâe kesâvõ nw~ ?AOB = 64
0
nw~ BP,
AQ keâes X hej keâešlee nw~ ?AXP keâe ceeve (ef[«eer ceW)
keäÙee nw?
(a) 36 (b) 32
(c) 58 (d) 54
32. In the given figure, E and F are the centers of
two identical circles. What is the ratio of area
of triangle AOB to the area of triangle DOC ?
oer ieF& Deeke=âefle ceW, E leLee F oes mece™he Je=òeeW kesâ kesâvõ
nQ~ ef$eYegpe AOB kesâ #es$eHeâue keâe ef$eYegpe DOC kesâ
#es$eHeâue mes keäÙee Devegheele nw?
(a) 1 : 3 (b) 1 : 9
(c) 1 : 8 (d) 1 : 4
33. In the given figure, in a right angle triangle
ABC, AB = 12 cm and AC = 15 cm. A square is
inscribed in the triangle. One of the vertices of
square coincides with the vertex of triangle.
What is the maximum possible area (in cm
2
) of
the square ?
oer ieF& Deeke=âefle ceW, Skeâ mecekeâesCe ef$eYegpe ABC ceW, AB
= 12 mes.ceer. leLee AC = 15 mes.ceer. nQ~ ef$eYegpe kesâ Yeerlej
Skeâ Jeie& yeveeÙee ieÙee nw~ Jeie& kesâ Meer<eeX ceW mes Skeâ ef$eYegpe
kesâ Meer<e& mes mheMe& keâjlee nw~ Jeie& keâe DeefOekeâlece mebYeJe
#es$eHeâue (mes.ceer.
2
ceW) keäÙee nw?
(a) 1296/49 (b) 25
(c) 1225/36 (d) 1225/64
34. In the given figure, PQRS is a square of side 8
cm. ?PQO = 60
0
. What is the area (in cm
2
) of
the triangle POQ ?
oer ieF& Deeke=âefle ceW, PQRS 8 mes.ceer. Yegpee Jeeuee Skeâ
Jeie& nw~ ?PQO = 60
0
nw~ ef$eYegpe POQ keâe #es$eHeâue
(mes.ceer.
2
ceW) keäÙee nw?
(a) 32 3 (b)
( )
24 3 1
? ?
-
? ?
(c)
( )
48 3 1
? ?
-
? ?
(d)
( )
16 3 3
? ?
-
? ?
35. In the given figure, two squares of sides 8 cm
and 20 cm are given. What is the area (in cm
2
)
of the shaded part ?
oer ieF& Deeke=âefle ceW, 8 mes.ceer. leLee 20 mes.ceer. Yegpee Jeeues
oes Jeie& efoÙes ieÙes nQ~ ÚeÙeebefkeâle Yeeie keâe #es$eHeâue
(mes.ceer.
2
ceW) keäÙee nw?
(a) 120/7 (b) 160/7
(c) 180/7 (d) 240/13
36. The area of a regular hexagon is equal to the
area of the square. What is the ratio of the
perimeter of the regular hexagon to the
perimeter of square ?
mece <ešdYegpe keâe #es$eHeâue Jeie& kesâ #es$eHeâue kesâ yejeyej nw~
mece <ešdYegpe kesâ heefjceehe keâe Jeie& kesâ heefjceehe mes keäÙee
Devegheele nw?
(a) 6 3 : 3 6 (b) 2 3 : 6 2
(c) 6 3 : 2 (d) 6 3 : 2 3
37. In the given figure, ABCDEF is a regular
hexagon of side 12 cm. P, Q and R are the mid
points of the sides AB, CD and EF respectively.
What is the area (in cm
2
) of triangle PQR ?
oer ieF& Deeke=âefle ceW, ABCDEF Skeâ mece <ešdYegpe nw
efpemekeâer Yegpee 12 mes.ceer. nw~ P, Q leLee R ›eâceMe:
YegpeeDeeW AB, CD leLee EF kesâ ceOÙe efyevog nw~ ef$eYegpe
PQR keâe #es$eHeâue (mes.ceer.
2
ceW) keäÙee nw?
(a) 27 6 (b) 81 3
(c) 54 3 (d) 54 6
38. A man is running at the speed of 20 km/hr.
What is time (in seconds) taken by man to
cover one round of a circular garden of radius
350 metres ?
Skeâ JÙeefòeâ 20 efkeâceer./Iebše keâer ieefle mes oewÌ[ jne nw~
Skeâ Je=òeekeâej yeieerÛee efpemekeâer ef$epÙee 350 ceeršj nw, keâes
heej keâjves ceW JÙeefòeâ Éeje efkeâlevee meceÙe (meskebâ[ ceW)
efueÙee peeÙesiee?
(a) 412 (b) 336
(c) 396 (d) 376
39. In the given figure, four identical semicircles
are drawn in a quadrant. XA = 7 cm. What is
the area (in cm
2
) of shaded region ?
oer ieF& Deeke=âefle ceW, Ûeej mece™he DeOe&Je=òeeW keâes Skeâ Je=òe
kesâ ÛelegLe& Yeeie ceW yeveeÙee ieÙee nw~ XA = 7 mes.ceer. nw~
ÚeÙeebefkeâle Yeeie keâe #es$eHeâue (mes.ceer.
2
ceW) keäÙee nw?
(a) 70 (b) 140
(c) 77 (d) 84
40. A regular hexagonal base prism has height 8
cm and side of base is 4 cm. What is the total
surface area (in cm
2
) of the prism ?
Skeâ mece <ešdYegpe DeeOeej Jeeues efØe]pce keâer TBÛeeF& 8
mes.ceer. nw leLee DeeOeej keâer Yegpee 4 mes.ceer. nw~ efØe]pce keâe
kegâue he=<"erÙe #es$eHeâue (mes.ceer.
2
ceW) keäÙee nw?
(a)
( )
54 3 3 + (b)
( )
36 3 3 +
(c)
( )
48 4 3 + (d)
( )
24 4 3 +
41. A cube is placed inside a cone of radius 20 cm
and height 10 cm, one of its face being on the
base of the cone and vertices of opposite face
touching the cone. What is the length (in cm) of
side of the cube ?
Skeâ Ieve keâes Skeâ Mebkegâ efpemekeâer ef$epÙee 20 mesceer. leLee
TBÛeeF& 10 mesceer. nQ, kesâ Deboj jKee peelee nw, Gmekeâer Skeâ
melen Mebkegâ kesâ DeeOeej keâer Deesj nw leLee efJehejerle melen kesâ
Meer<e& Mebkegâ keâes mheMe& keâj jns nQ~ Ieve keâer Yegpee keâer
uecyeeF& (mes.ceer. ceW) keäÙee nw?
(a) 5 (b) 6
(c) 8 (d) 9
42. A cylinder of radius 4.5 cm and height 12 cm
just fits in another cylinder completely with
their axis perpendicular. What is the radius (in
cm) of second cylinder ?
Skeâ yesueve efpemekeâer ef$epÙee 4.5 mes.ceer. leLee TBÛeeF& 12
mes.ceer. nw, keâes Skeâ DevÙe yesueve ceW Gvekesâ De#eeW kesâ
uecyeJele hetjer lejn mes meceeefnle efkeâÙee ieÙee nw~ otmejs
yesueve keâer ef$epÙee (mes.ceer. ceW) keäÙee nw?
(a) 5 (b) 6
(c) 15 (d) 7.5
43. A right circular cylinder has height 28 cm and
radius of base 14 cm. Two hemispheres of
radius 7 cm each are cut from each of the two
bases of the cylinder. What is the total surface
area (in cm
2
) of the remaining part ?
Skeâ mece ieesueekeâej yesueve keâer TBÛeeF& 28 mes.ceer. leLee
DeeOeej keâer ef$epÙee 14 mes.ceer. nw~ yesueve kesâ oes DeeOeejeW ceW
mes ØelÙeskeâ mes 7 mes.ceer. ef$epÙee Jeeues oes DeOe&ieesues keâešs
peeles nQ~ Mes<e Yeeie keâe kegâue he=<"erÙe #es$eHeâue (mes.ceer.
2
ceW)
keäÙee nesiee?
(a) 3842 (b) 4312
(c) 3296 (d) 4436
44. Two spheres of equal radius are taken out by
cutting from a solid cube of side
( )
12 + 4 3 cm.
What is the maximum volume (in cm
3
) eof each
sphere?
meceeve ef$epÙee Jeeues oes ieesues keâes Skeâ "esme Ieve
efpemekeâer Yegpee
( )
12 + 4 3 mes.ceer. nw, mes keâeškeâj
efvekeâeuee ieÙee nw~ ØelÙeskeâ ieesues keâe DeefOekeâlece DeeÙeleve
(mes.ceer.
3
) keäÙee nw?
(a) 1077.31 (b) 905.14
(c) 966.07 (d) 1007.24
45. Three toys are in a shape of cylinder,
hemisphere and cone. The three toys have same
base. Height of each toy is 2 2 cm. What is
the ratio of the total surface areas of cylinder,
hemisphere and cone respectively ?
leerve efKeueewves yesueve, DeOe&ieesues leLee Mebkegâ kesâ Deekeâej ceW
nQ~ leerveeW efKeueewveeW keâe DeeOeej meceeve nw~ ØelÙeskeâ efKeueewves
keâer TBÛeeF& 2 2 mes.ceer. nw~ yesueve, DeOe&ieesues leLee Mebkegâ
kesâ kegâue he=<"erÙe #es$eHeâue keâe ›eâceMe: Devegheele keäÙee nw?
(a)
( )
4 : 3 : 2 1
? ?
+
? ?
(b)
( )
4 : 3: 2 2
? ?
+
? ?
(c) 4 : 3 : 2 2 (d)
( )
2 :1: 1 2 +
Read More