Banking Exams Exam  >  Banking Exams Notes  >  Quantitative Aptitude/संख्यात्मक योग्यता  >  Short Notes: Geometry (ज्यामिति)

Short Notes: Geometry (ज्यामिति) | Quantitative Aptitude/संख्यात्मक योग्यता - Banking Exams PDF Download

ज्यामिति की मूल अवधारणाएँ (Fundamental concepts of Geometry)

  • बिंदु: यह एक सटीक स्थान है। यह एक महीन बिंदी है जिसकी न तो लंबाई होती है, और न ही चौड़ाई, और न ही मोटाई; बल्कि स्थान होता है यानी इसका कोई परिमाण नहीं होता है।
  • रेखाखंड: दो बिंदुओं A और B से जुड़ने वाले सीधे मार्ग को एक रेखा खंड AB कहा जाता है। इसकी एकअंतिम बिंदु और एक निश्चित लंबाई होती है।
  • किरण: वह रेखाखंड, जिसे केवल एक ही दिशा में बढ़ाया जा सकता है उसे किरण कहा जाता है।
  • प्रतिच्छेदी रेखा: दो रेखाएं, जिसमें एक उभयनिष्ट बिंदु हो, प्रतिच्छेदी रेखाएँ कहलाती है। उभयनिष्ट बिंदु को प्रतिच्छेदन बिंदु के रूप में जाना जाता है।
  • समवर्ती रेखा: यदि दो या दो से अधिक रेखाएं एक ही बिंदु पर प्रतिच्छेद करती हैं, तो उन्हें समवर्ती रेखाओं के रूप में जाना जाता है।
  • कोण: जब दो सीधी रेखाएँ एक बिंदु पर मिलती हैं तो वे एक कोण बनाती हैं।
  • समकोण: एक कोण जिसका माप 90 ° होता है उसे समकोण कहते हैं।
  • न्यूनकोण: वह कोण, जिसका माप एक समकोण से कम होता है (यानी, 90 ° से कम), उसे न्यूनकोण कहते है।
  • अधिककोण : वह कोण, जिसका माप एक समकोण से अधिक और दो समकोण से कम होता है (अर्थात, 90 ° से अधिक और 180 ° से कम) को अधिक कोण कहा जाता है।
  • वृहत्तकोण:- जिस कोण का मान 180° से बड़ा और 360° से छोटा हो। उसे वृहत्तकोण कहते हैं।.
  • पूरक कोण: यदि दो कोणों का योग एक समकोण (यानी, 90 °) है, तो उन्हें पूरक कोण कहा जाता है। इसलिए, कोण θ का पूरक 90 ° – θ के बराबर होता है।
  • समपूरक कोण: दो कोणों को समपूरक कोण कहा जाता है, यदि उनका योग 180 ° है। उदाहरण: 130 ° और 50 ° वाले कोण समपूरक कोण हैं। दो समपूरक कोण एक दूसरे के समपूरक होते हैं। इसलिए, एक कोण θ का समपूरक कोण 180° – θ के बराबर होता है।
  • शीर्षाभिमुख कोण: जब दो सीधी रेखाएं एक बिंदु पर एक दूसरे को काटती हैं, तो विपरीत कोणों के युग्म को शीर्षाभिमुख कोण कहा जाता है।
  • कोण समद्विभाजक: यदि किसी कोण वाले शीर्ष से होकर गुजरने वाली कोई किरण या सरल रेखा कोण को बराबर माप के दो कोणों में विभाजित करती है, तो उस रेखा को उस कोण के समद्विभाजक के रूप में जाना जाता है।
  • समानांतर रेखाएं: दो रेखाएं समानांतर होती हैं यदि वे एक तल में हो, और वे एक-दूसरे को नहीं हो, भले ही उसे किसी तरफ बढ़ाया जाए।
  • तिर्यक रेखा: तिर्यक रेखा एक ऐसी रेखा है जो अलग-अलग बिंदुओं पर दो या अधिक एक तलीय रेखाओं को काटती है।

त्रिभुज: भाग-1

  • केन्द्रक, माध्यिका को 2: 1 के अनुपात में विभाजित करता है। केन्द्रक, तीनों मध्यिकाओं का प्रतिच्छेदन बिंदु है।
  • त्रिभुज के दो आसन्न भुजाओं का अनुपात तीसरे भुजा के दो भागों के बराबर है जो आंतरिक कोण समद्विभाजक द्वारा बनता है।
  • एक समबाहु त्रिभुज में आंतरिक कोण समद्विभाजक और माध्यिका बराबर होती हैं।
  • दो त्रिभुजो का क्षेत्रफल समान होता है यदि उनका आधार समान हो और दो समानांतर रेखाओं के बीच स्थित हों।
  •  किसी त्रिभुज में छोटे कोण के सामने की भुजा, बड़े कोण के सामने की भुजा की तुलना में छोटी होती है।
  • जब दो त्रिभुजों की संगत भुजाएँ समानुपात में होती हैं तो संबंधित कोण भी अनुपात में होते हैं
  • यदि दो त्रिभुज समरूप हैं, तो
  • यदि  दो त्रिभुज समरूप है, तो –
    दोनों त्रिभुजों के क्षेत्रफल का अनुपात = संबंधित भुजाओं के वर्गों का अनुपात
    दोनों त्रिभुजों के भुजाओं का अनुपात= ऊंचाई(शीर्षलम्ब) का अनुपात
    = मध्यिका का अनुपात
    = कोण समद्विभाजक का अनुपात
    = अंतःत्रिज्या /परित्रिज्या का अनुपात
    = परिमापों का अनुपात
  • दो त्रिभुजों के क्षेत्रफल का अनुपात = संबंधित भुजाओं के वर्गों का अनुपात
  • कुछ महत्वपूर्ण बातें:
    • लम्बकेंद्र → तीन शीर्षलंबो का प्रतिच्छेदन बिंदु.
    • अन्तःकेंद्र → त्रिभुज के कोण समद्विभाजक का प्रतिच्छेदन बिंदु
    • परिकेंद्र  → भुजाओं के लंब समद्विभाजक का प्रतिच्छेदन बिंदु
    • मध्यिका → भुजा के मध्य बिंदु से भुजा के सामने के शीर्ष को मिलाने वाली रेखा
  • समकोण त्रिभुज में, समकोण के शीर्ष से खींचे गए शीर्षलंब के कारण बना दोनों तरफ का त्रिभुज, मूल त्रिभुज तथा एक दूसरे के समरूप होते हैं।

रेखाओं  और कोण पर आधारित कुछ प्रश्न

प्रश्न 1. नीचे दी गयी आकृति में, PQ और RS, दो समानांतर रेखाएं हैं तथा AB तिर्यक रेखा है। AC और BC, क्रमशः ∠BAQ और ∠ABS के कोण समद्विभाजक है, यदि ∠BAC = 30°है, तो ∠ABC और ∠ACB ज्ञात कीजिए।

Short Notes: Geometry (ज्यामिति) | Quantitative Aptitude/संख्यात्मक योग्यता - Banking Exams

(a) 60° और 90°
(b) 30° और 120°
(c) 60° और 30°
(d) 30° और 90°

उत्तर. (a)

∠BAQ+ ∠ABS = 180° [संपूरक कोण]

⇒∠BAQ/2 + ∠ABS/2 = 180°/2=90°⇒∠BAC+ ∠ABC= 90°

इस प्रकार, ∠ABC = 60° और  ∠ACB = 90°.

 

प्रश्न 2. यदि वृत्त A के 45 ° चाप की लंबाई, B के 60 ° चाप के बराबर है, तो वृत्त A और वृत्त B के क्षेत्रफलों का अनुपात ज्ञात कीजिए।
(a) 16/8
(b) 16/9
(c) 8/16
(d) 9/16

उत्तर. (b)

माना वृत्त A की त्रिज्या r1 और वृत्त B की r2 है।

45/360 x 2π x r1 = 60/360 x 2πx r2 => r1/r2= 4/3

क्षेत्रफलों का अनुपात =πr1^2/πr2^2 = 16/9

 

प्रश्न 3. नीचे दी गयी आकृति में, रेखा AB और DE समानांतर हैं। तो ∠CDE का मान क्या होगा?

Short Notes: Geometry (ज्यामिति) | Quantitative Aptitude/संख्यात्मक योग्यता - Banking Exams

(a) 60°
(b) 120°
(c) 30°
(d) 150°

उत्तर. (d)

हम रेखा CF // DE खींचते है, जैसा कि आकृति में दिखाया गया है
Short Notes: Geometry (ज्यामिति) | Quantitative Aptitude/संख्यात्मक योग्यता - Banking Exams

∠BCF = ∠ABC = 55° ⇒ ∠DCF = 30°.

⇒ CDE = 180° − 30° = 150°.


प्रश्न 4. नीचे दी गयी आकृति में, a + b का मान ज्ञात कीजिए:

Short Notes: Geometry (ज्यामिति) | Quantitative Aptitude/संख्यात्मक योग्यता - Banking Exams

(a) 60°

(b) 120°

(c) 80°

(d) 150°

उत्तर. (c)

उपरोक्त आकृति में, ∠CED = 180° − 125° = 55°. ∠ACD, ΔABC का बाह्य कोण है। अतः, ∠ACD = a + 45°।  ΔCED में, a + 45° + 55° + b = 180° ⇒ a + b = 80°


प्रश्न 5. बिंदु D, E और F, त्रिभुज ABC के भुजाओं को 1: 3, 1: 4, और 1: 1 के अनुपात में विभाजित करते हैं, जैसा किआकृति में दिखाया गया है। तो त्रिभुज ABC का क्षेत्रफल,त्रिभुज DEF के क्षेत्रफल का कौन सा भाग है?

Short Notes: Geometry (ज्यामिति) | Quantitative Aptitude/संख्यात्मक योग्यता - Banking Exams

(a) 16/40
(b) 13/40
(c) 14/16
(d) 12/16

उत्तर. (d)

Δ ADE का क्षेत्रफल/ΔABC का क्षेत्रफल =(1×3)/(4×5)=3/20,

Δ BDF का क्षेत्रफल/ ΔABCका क्षेत्रफल = (1×1)/(4×2)=1/8,

Δ CFE का क्षेत्रफल/ ΔABCका क्षेत्रफल = (4×1)/(5×2)=2/5,

इस प्रकार, Δ DEF का क्षेत्रफल/ ΔABC का क्षेत्रफल= 1-(3/20+1/8+2/5)=13/40

The document Short Notes: Geometry (ज्यामिति) | Quantitative Aptitude/संख्यात्मक योग्यता - Banking Exams is a part of the Banking Exams Course Quantitative Aptitude/संख्यात्मक योग्यता.
All you need of Banking Exams at this link: Banking Exams
225 videos|9 docs|26 tests

Top Courses for Banking Exams

Explore Courses for Banking Exams exam

Top Courses for Banking Exams

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Summary

,

study material

,

Important questions

,

Sample Paper

,

ppt

,

Extra Questions

,

MCQs

,

shortcuts and tricks

,

Short Notes: Geometry (ज्यामिति) | Quantitative Aptitude/संख्यात्मक योग्यता - Banking Exams

,

Semester Notes

,

mock tests for examination

,

practice quizzes

,

Exam

,

Free

,

past year papers

,

Previous Year Questions with Solutions

,

pdf

,

Short Notes: Geometry (ज्यामिति) | Quantitative Aptitude/संख्यात्मक योग्यता - Banking Exams

,

Short Notes: Geometry (ज्यामिति) | Quantitative Aptitude/संख्यात्मक योग्यता - Banking Exams

,

Objective type Questions

,

Viva Questions

,

video lectures

;