Download, print and study this document offline |
Page 1 CBSE TEST PAPER-01 CLASS - XII MATHEMATICS (Calculus : Continuity & differentiability) Topic: - differentiation 1. lim lim 2 2 cos ( ) 2 x x K x f x x p p p - - ? ? = - lim 0 cos 2 2 2 h K h h p p p ? ? ? - ? ? ? ? = ? ? - - ? ? ? ? lim 0 sin h 2 2 2 h K h p p ? = - + lim 0 sin h 2 h k h ? = lim 0 sin h . 2 h K h ? ? ? = ? ? ? ? 2 K = lim lim 2 2 ( ) 3 x x f x p p + ? ? = lim 0 3 3 3 2 1 h K AT? ? = = = 2. Let y = u + v When u = x sinx , v = (sinx) cosx sin (1) x dy du dv dx dx dx u x = + - - - - = Taking log both side K = 6 Page 2 CBSE TEST PAPER-01 CLASS - XII MATHEMATICS (Calculus : Continuity & differentiability) Topic: - differentiation 1. lim lim 2 2 cos ( ) 2 x x K x f x x p p p - - ? ? = - lim 0 cos 2 2 2 h K h h p p p ? ? ? - ? ? ? ? = ? ? - - ? ? ? ? lim 0 sin h 2 2 2 h K h p p ? = - + lim 0 sin h 2 h k h ? = lim 0 sin h . 2 h K h ? ? ? = ? ? ? ? 2 K = lim lim 2 2 ( ) 3 x x f x p p + ? ? = lim 0 3 3 3 2 1 h K AT? ? = = = 2. Let y = u + v When u = x sinx , v = (sinx) cosx sin (1) x dy du dv dx dx dx u x = + - - - - = Taking log both side K = 6 log u = log x sinx log u = sinx . logx diff. both side w.r. to x 1 1 sin . log .cos sin log .cos du x x x u dx x du x u x x dx x = + ? ? = + ? ? ? ? sin cos sin log .cos (sin ) x x du x x x x x dx x v x + ? ? = ? ? ? ? = Taking log both side log v = log (sinx) cosx log cos .log(sin ) v x x = Differentiation both side w.r. to x [ ] 1 1 . cos . (cos ) log(sin )( sin ) sin cot .cos log(sin ).sin dv x x x x v dx x dv v x x x x dx = + - = - [ ] cos (sin ) cot .cos log(sin ).sin x dv x x x x x dx = - Hence [ ] sin cos sin log .cos (sin ) cot cos log(sin ).sin x x dy x x x x x x x x x x dx x + ? ? = + - ? ? ? ? 3. 1 sin t x a - = Square both side 1 2 sin t x a - = Differentiation 1 sin 2 1 2 .log (1) 1 t dx x a a dt t - = - - - - - - 1 1 cos 2 cos t t y a y a - - = ? = Page 3 CBSE TEST PAPER-01 CLASS - XII MATHEMATICS (Calculus : Continuity & differentiability) Topic: - differentiation 1. lim lim 2 2 cos ( ) 2 x x K x f x x p p p - - ? ? = - lim 0 cos 2 2 2 h K h h p p p ? ? ? - ? ? ? ? = ? ? - - ? ? ? ? lim 0 sin h 2 2 2 h K h p p ? = - + lim 0 sin h 2 h k h ? = lim 0 sin h . 2 h K h ? ? ? = ? ? ? ? 2 K = lim lim 2 2 ( ) 3 x x f x p p + ? ? = lim 0 3 3 3 2 1 h K AT? ? = = = 2. Let y = u + v When u = x sinx , v = (sinx) cosx sin (1) x dy du dv dx dx dx u x = + - - - - = Taking log both side K = 6 log u = log x sinx log u = sinx . logx diff. both side w.r. to x 1 1 sin . log .cos sin log .cos du x x x u dx x du x u x x dx x = + ? ? = + ? ? ? ? sin cos sin log .cos (sin ) x x du x x x x x dx x v x + ? ? = ? ? ? ? = Taking log both side log v = log (sinx) cosx log cos .log(sin ) v x x = Differentiation both side w.r. to x [ ] 1 1 . cos . (cos ) log(sin )( sin ) sin cot .cos log(sin ).sin dv x x x x v dx x dv v x x x x dx = + - = - [ ] cos (sin ) cot .cos log(sin ).sin x dv x x x x x dx = - Hence [ ] sin cos sin log .cos (sin ) cot cos log(sin ).sin x x dy x x x x x x x x x x dx x + ? ? = + - ? ? ? ? 3. 1 sin t x a - = Square both side 1 2 sin t x a - = Differentiation 1 sin 2 1 2 .log (1) 1 t dx x a a dt t - = - - - - - - 1 1 cos 2 cos t t y a y a - - = ? = 1 cos 2 1 2 log (2) 1 t dy y a a dt t - - = - - - - - - Dividing (2) and (1) 1 1 cos 2 sin 2 1 log 2 1 1 2 log 1 t t dy a a y t dt dx x a a dt t - - - - = - 1 1 cos sin . t t y dy a x dx a - - = - 1 1 cos 2 2 2 sin 2 . t t a y y dy y x dx x a x - - ? ? = = - ? ? ? ? = ? ? ? dy y dx x - = 4. y = (tan -1 x) 2 (given) Differentiation both side w.r. to x 1 1 2 2 1 1 1 2 tan . 1 (1 ) 2 tan y x x x y x - - = + + = Again differentiation both side w.r. to 2 2 1 2 2 2 2 1 1 (1 ) .(2 ) 2. 1 (1 ) 2 ( 1) 2 x y y x x x y x x y + + = + + + + = 5. y = x 2 + 2 is continuous in [-2, 2] and differentiable in (-2, 2). Also f (-2) = f(2) = 6 Hence all the condition of Rolle’s Theorem are verified hence their exist value c such that f ' (c) = 0 0 = 2c. C = 0 Hence prove. Page 4 CBSE TEST PAPER-01 CLASS - XII MATHEMATICS (Calculus : Continuity & differentiability) Topic: - differentiation 1. lim lim 2 2 cos ( ) 2 x x K x f x x p p p - - ? ? = - lim 0 cos 2 2 2 h K h h p p p ? ? ? - ? ? ? ? = ? ? - - ? ? ? ? lim 0 sin h 2 2 2 h K h p p ? = - + lim 0 sin h 2 h k h ? = lim 0 sin h . 2 h K h ? ? ? = ? ? ? ? 2 K = lim lim 2 2 ( ) 3 x x f x p p + ? ? = lim 0 3 3 3 2 1 h K AT? ? = = = 2. Let y = u + v When u = x sinx , v = (sinx) cosx sin (1) x dy du dv dx dx dx u x = + - - - - = Taking log both side K = 6 log u = log x sinx log u = sinx . logx diff. both side w.r. to x 1 1 sin . log .cos sin log .cos du x x x u dx x du x u x x dx x = + ? ? = + ? ? ? ? sin cos sin log .cos (sin ) x x du x x x x x dx x v x + ? ? = ? ? ? ? = Taking log both side log v = log (sinx) cosx log cos .log(sin ) v x x = Differentiation both side w.r. to x [ ] 1 1 . cos . (cos ) log(sin )( sin ) sin cot .cos log(sin ).sin dv x x x x v dx x dv v x x x x dx = + - = - [ ] cos (sin ) cot .cos log(sin ).sin x dv x x x x x dx = - Hence [ ] sin cos sin log .cos (sin ) cot cos log(sin ).sin x x dy x x x x x x x x x x dx x + ? ? = + - ? ? ? ? 3. 1 sin t x a - = Square both side 1 2 sin t x a - = Differentiation 1 sin 2 1 2 .log (1) 1 t dx x a a dt t - = - - - - - - 1 1 cos 2 cos t t y a y a - - = ? = 1 cos 2 1 2 log (2) 1 t dy y a a dt t - - = - - - - - - Dividing (2) and (1) 1 1 cos 2 sin 2 1 log 2 1 1 2 log 1 t t dy a a y t dt dx x a a dt t - - - - = - 1 1 cos sin . t t y dy a x dx a - - = - 1 1 cos 2 2 2 sin 2 . t t a y y dy y x dx x a x - - ? ? = = - ? ? ? ? = ? ? ? dy y dx x - = 4. y = (tan -1 x) 2 (given) Differentiation both side w.r. to x 1 1 2 2 1 1 1 2 tan . 1 (1 ) 2 tan y x x x y x - - = + + = Again differentiation both side w.r. to 2 2 1 2 2 2 2 1 1 (1 ) .(2 ) 2. 1 (1 ) 2 ( 1) 2 x y y x x x y x x y + + = + + + + = 5. y = x 2 + 2 is continuous in [-2, 2] and differentiable in (-2, 2). Also f (-2) = f(2) = 6 Hence all the condition of Rolle’s Theorem are verified hence their exist value c such that f ' (c) = 0 0 = 2c. C = 0 Hence prove. 6. 1 1 2 sin 1 4 x x y + - ? ? = ? ? + ? ? 1 2 2 .2 sin 1 (2 ) x x - ? ? = ? ? + ? ? 1 2 2 tan 2 tan sin 1 tan x Put ? ? ? - = ? ? = ? ? + ? ? 1 sin (sin 2 ) 2 ? ? - = = 1 2 2.tan 2 1 2. . (2 ) 1 (2 ) x x x y dy d dx dx - = = + 2 .2 .log 2 1 4 x x = + 7. 2 sin u x = cos 2sin .cos x du x x dx v e = = ( ) cos cos sin 2sin .cos .sin x x dv e x dx du x x dv e x = - = - cos 2cos x x e = 8. 1 1 0 x y y x + + + = 1 1 x y y x + = - + Square both side Page 5 CBSE TEST PAPER-01 CLASS - XII MATHEMATICS (Calculus : Continuity & differentiability) Topic: - differentiation 1. lim lim 2 2 cos ( ) 2 x x K x f x x p p p - - ? ? = - lim 0 cos 2 2 2 h K h h p p p ? ? ? - ? ? ? ? = ? ? - - ? ? ? ? lim 0 sin h 2 2 2 h K h p p ? = - + lim 0 sin h 2 h k h ? = lim 0 sin h . 2 h K h ? ? ? = ? ? ? ? 2 K = lim lim 2 2 ( ) 3 x x f x p p + ? ? = lim 0 3 3 3 2 1 h K AT? ? = = = 2. Let y = u + v When u = x sinx , v = (sinx) cosx sin (1) x dy du dv dx dx dx u x = + - - - - = Taking log both side K = 6 log u = log x sinx log u = sinx . logx diff. both side w.r. to x 1 1 sin . log .cos sin log .cos du x x x u dx x du x u x x dx x = + ? ? = + ? ? ? ? sin cos sin log .cos (sin ) x x du x x x x x dx x v x + ? ? = ? ? ? ? = Taking log both side log v = log (sinx) cosx log cos .log(sin ) v x x = Differentiation both side w.r. to x [ ] 1 1 . cos . (cos ) log(sin )( sin ) sin cot .cos log(sin ).sin dv x x x x v dx x dv v x x x x dx = + - = - [ ] cos (sin ) cot .cos log(sin ).sin x dv x x x x x dx = - Hence [ ] sin cos sin log .cos (sin ) cot cos log(sin ).sin x x dy x x x x x x x x x x dx x + ? ? = + - ? ? ? ? 3. 1 sin t x a - = Square both side 1 2 sin t x a - = Differentiation 1 sin 2 1 2 .log (1) 1 t dx x a a dt t - = - - - - - - 1 1 cos 2 cos t t y a y a - - = ? = 1 cos 2 1 2 log (2) 1 t dy y a a dt t - - = - - - - - - Dividing (2) and (1) 1 1 cos 2 sin 2 1 log 2 1 1 2 log 1 t t dy a a y t dt dx x a a dt t - - - - = - 1 1 cos sin . t t y dy a x dx a - - = - 1 1 cos 2 2 2 sin 2 . t t a y y dy y x dx x a x - - ? ? = = - ? ? ? ? = ? ? ? dy y dx x - = 4. y = (tan -1 x) 2 (given) Differentiation both side w.r. to x 1 1 2 2 1 1 1 2 tan . 1 (1 ) 2 tan y x x x y x - - = + + = Again differentiation both side w.r. to 2 2 1 2 2 2 2 1 1 (1 ) .(2 ) 2. 1 (1 ) 2 ( 1) 2 x y y x x x y x x y + + = + + + + = 5. y = x 2 + 2 is continuous in [-2, 2] and differentiable in (-2, 2). Also f (-2) = f(2) = 6 Hence all the condition of Rolle’s Theorem are verified hence their exist value c such that f ' (c) = 0 0 = 2c. C = 0 Hence prove. 6. 1 1 2 sin 1 4 x x y + - ? ? = ? ? + ? ? 1 2 2 .2 sin 1 (2 ) x x - ? ? = ? ? + ? ? 1 2 2 tan 2 tan sin 1 tan x Put ? ? ? - = ? ? = ? ? + ? ? 1 sin (sin 2 ) 2 ? ? - = = 1 2 2.tan 2 1 2. . (2 ) 1 (2 ) x x x y dy d dx dx - = = + 2 .2 .log 2 1 4 x x = + 7. 2 sin u x = cos 2sin .cos x du x x dx v e = = ( ) cos cos sin 2sin .cos .sin x x dv e x dx du x x dv e x = - = - cos 2cos x x e = 8. 1 1 0 x y y x + + + = 1 1 x y y x + = - + Square both side 2 2 2 2 2 2 2 2 2 2 (1 ) (1 ) 0 x y y x x x y y xy x y x y xy + = + + = + - + - = ( )( ) ( ) 0 ( )[ ] 0 x y x y xy x y x y x y xy - + + - = - + + = 0 (1 ) x y xy y x x + + = + = - 1 x y x - = + 2 (1 )(1) ( )(1) (1 ) dy x x dx x ? ? + - = - ? ? + ? ? 2 2 1 (1 ) 1 (1 ) x x x dy dx x ? ? + - = - ? ? + ? ? - = + 9. cos .cos( ) ( ) y x a y given = + cos cos( ) y x a y = + 2 cos( )( sin ) cos .( sin( )) cos ( ) dx a y y y a y dy a y + - - - + = + 2 cos .sin( ) sin cos( ) cos ( ) dx y a y y a y dy a y + - + = + 2 2 sin( ) cos ( ) cos ( ) sin dx a y y dy a y dy a y dx a + - = + + = 10. (cos .sin ) x a t t t = + [ ] sin .cos sin .1 [ .cos ] (1) dx a t t t t dt a t t = - + + = - - - - -Read More