JEE Exam  >  JEE Notes  >  Mathematics (Maths) for JEE Main & Advanced  >  Solved Example: Limit Continuity and Derivative

Solved Example: Limit Continuity and Derivative | Mathematics (Maths) for JEE Main & Advanced PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


Solved Example on Limit Continuity and 
Derivative 
JEE Mains 
Q1:  If ?? (?? +?? )=?? (?? )·?? (?? ) for all ?? and ?? and ?? (?? )=?? ,?? '
(?? )=?? , then ?? '
(?? ) will be 
(a) 2 
(b) 4 
(c) 6 
(d) 8 
Ans: (c) Let ?? =5,?? =0??? (5+0)=?? (5)·?? (0) 
??? (5)=?? (5)?? (0)??? (0)=1 
Therefore, ?? '
(5)=lim
h?0
?
?? (5+h)-?? (5)
h
=lim
h?0
?
?? (5)?? (h)-?? (5)
h
=lim
h?0
?2[
?? (h)-1
h
] 
 Therefore, ?? '
(5)=lim
h?0
?
?? (5+h)-?? (5)
h
=lim
h?0
?
?? (5)?? (h)-?? (5)
h
=lim
h?0
?2[
?? (h)-1
h
] {??? (5)=2}
 =2lim
h?0
?[
?? (h)-?? (0)
h
]=2×?? '
(0)=2×3=6.
 
Q2:  If ?? (?? )=?? ,?? '
(?? )=-?? ,?? (?? )=-?? ,?? '
(?? )=?? , then ?????? ?? ??? ?
?? (?? )?? (?? )-?? (?? )?? (?? )
?? -?? = 
(a) -5 
(b) 10 
(c) -10 
(d) 5 
Ans: (b) lim
?? ??? ?
?? (?? )?? (?? )-?? (?? )?? (?? )
?? -?? . We add and subtract ?? (?? )?? (?? ) in numerator 
 = lim
?? ??? ?
?? (?? )?? (?? )-?? (?? )?? (?? )+?? (?? )?? (?? )-?? (?? )?? (?? )
?? -?? = lim
?? ??? ??? (?? )[
?? (?? )-?? (?? )
?? -?? ]- lim
?? ??? ??? (?? )[
?? (?? )-?? (?? )
?? -?? ]
 = ?? (?? )lim
?? ??? ?[
?? (?? )-?? (?? )
?? -?? ]-?? (?? )lim
?? ??? ?[
?? (?? )-?? (?? )
?? -?? ] = ?? (?? )?? '
(?? )-?? (?? )?? '
(?? )  [by using first principle formula] 
 = 3.4-(-1)(-2)= 12-2= 10
 
[by using first principle formula] 
Trick : lim
?? ??? ?
?? (?? )?? (?? )-?? (?? )?? (?? )
?? -?? 
Using L-Hospital's rule, Limit =lim
?? ??? ?
?? '
(?? )?? (?? )-?? (?? )?? '
(?? )
1
; 
Limit =?? '
(?? )?? (?? )-?? (?? )?? '
(?? )=(4)(3)-(-1)(-2)=12-2=10. 
 
Page 2


Solved Example on Limit Continuity and 
Derivative 
JEE Mains 
Q1:  If ?? (?? +?? )=?? (?? )·?? (?? ) for all ?? and ?? and ?? (?? )=?? ,?? '
(?? )=?? , then ?? '
(?? ) will be 
(a) 2 
(b) 4 
(c) 6 
(d) 8 
Ans: (c) Let ?? =5,?? =0??? (5+0)=?? (5)·?? (0) 
??? (5)=?? (5)?? (0)??? (0)=1 
Therefore, ?? '
(5)=lim
h?0
?
?? (5+h)-?? (5)
h
=lim
h?0
?
?? (5)?? (h)-?? (5)
h
=lim
h?0
?2[
?? (h)-1
h
] 
 Therefore, ?? '
(5)=lim
h?0
?
?? (5+h)-?? (5)
h
=lim
h?0
?
?? (5)?? (h)-?? (5)
h
=lim
h?0
?2[
?? (h)-1
h
] {??? (5)=2}
 =2lim
h?0
?[
?? (h)-?? (0)
h
]=2×?? '
(0)=2×3=6.
 
Q2:  If ?? (?? )=?? ,?? '
(?? )=-?? ,?? (?? )=-?? ,?? '
(?? )=?? , then ?????? ?? ??? ?
?? (?? )?? (?? )-?? (?? )?? (?? )
?? -?? = 
(a) -5 
(b) 10 
(c) -10 
(d) 5 
Ans: (b) lim
?? ??? ?
?? (?? )?? (?? )-?? (?? )?? (?? )
?? -?? . We add and subtract ?? (?? )?? (?? ) in numerator 
 = lim
?? ??? ?
?? (?? )?? (?? )-?? (?? )?? (?? )+?? (?? )?? (?? )-?? (?? )?? (?? )
?? -?? = lim
?? ??? ??? (?? )[
?? (?? )-?? (?? )
?? -?? ]- lim
?? ??? ??? (?? )[
?? (?? )-?? (?? )
?? -?? ]
 = ?? (?? )lim
?? ??? ?[
?? (?? )-?? (?? )
?? -?? ]-?? (?? )lim
?? ??? ?[
?? (?? )-?? (?? )
?? -?? ] = ?? (?? )?? '
(?? )-?? (?? )?? '
(?? )  [by using first principle formula] 
 = 3.4-(-1)(-2)= 12-2= 10
 
[by using first principle formula] 
Trick : lim
?? ??? ?
?? (?? )?? (?? )-?? (?? )?? (?? )
?? -?? 
Using L-Hospital's rule, Limit =lim
?? ??? ?
?? '
(?? )?? (?? )-?? (?? )?? '
(?? )
1
; 
Limit =?? '
(?? )?? (?? )-?? (?? )?? '
(?? )=(4)(3)-(-1)(-2)=12-2=10. 
 
Q3:  If ?? ?? (?? )+?? ?? (
?? ?? )=?? +?? and ?? =???? (?? ) then (
????
????
)
?? =?? is equal to 
(a) 14 
(b) 
?? ?? 
(c) 1 
(d) None of these 
Ans: (b)  ?5?? (?? )+3?? (
1
?? )=?? +2   
Replacing ?? by 
1
?? in (i), 5?? (
1
?? )+3?? (?? )=
1
?? +2 
On solving equation (i) and (ii), we get, 16?? (?? )=5?? -
3
?? +4,?16?? '
(?? )=5+
3
?? 2
 
 ??? =???? (?? )?
????
????
=?? (?? )+?? ?? '
(?? )=
1
16
(5?? -
3
?? +4)+?? ·
1
16
(5+
3
?? 2
)
 at ?? =1,
????
????
=
1
16
(5-3+4)+
1
16
(5+3)=
7
8
.
 
Q4: The derivative of ?? (?? )=?? |
?? at ?? =?? is 
(a) ?? 
(b) 1 
(c) -1 
(d) Not defined 
Ans:   (a)  ?? (?? )={
?? 3
,?? =0
-?? 3
, ?? <0
  and  ?? '
(?? )={
3?? 2
,?? =0
-3?? 2
,?? <0
 
 
?? '
(0
+
)=?? '
(0
-
)=0 
 
Q5: Example: 6 The first derivative of the function (?????? ?? ?? ?????? ?? ?? ?????? ?? ?? +??????
?? ?? ?? +?? ) with 
respect to ?? at ?? =?? is 
(a) 2 
(b) -1 
(c) -?? +?? ?? ?????? ?? ?? 
(d) -?? +??????
?? ?? 
Ans: (b)  ?? (?? )=sin 2?? ·cos 2?? ·cos 3?? +log
2
 2
?? +3
, ?? (?? )=
1
2
sin 4?? cos 3?? +(?? +
3)log
2
 2, ?? (?? )=
1
4
[sin 7?? +sin ?? ]+?? +3 
Differentiate w.r.t. ?? , 
?? '
(?? )=
1
4
[7cos 7?? +cos ?? ]+1,?? '
(?? )=
1
4
7cos 7?? +
1
4
cos ?? +1, ?? '
(?? )=-2+1=-1. 
 
 
 
Page 3


Solved Example on Limit Continuity and 
Derivative 
JEE Mains 
Q1:  If ?? (?? +?? )=?? (?? )·?? (?? ) for all ?? and ?? and ?? (?? )=?? ,?? '
(?? )=?? , then ?? '
(?? ) will be 
(a) 2 
(b) 4 
(c) 6 
(d) 8 
Ans: (c) Let ?? =5,?? =0??? (5+0)=?? (5)·?? (0) 
??? (5)=?? (5)?? (0)??? (0)=1 
Therefore, ?? '
(5)=lim
h?0
?
?? (5+h)-?? (5)
h
=lim
h?0
?
?? (5)?? (h)-?? (5)
h
=lim
h?0
?2[
?? (h)-1
h
] 
 Therefore, ?? '
(5)=lim
h?0
?
?? (5+h)-?? (5)
h
=lim
h?0
?
?? (5)?? (h)-?? (5)
h
=lim
h?0
?2[
?? (h)-1
h
] {??? (5)=2}
 =2lim
h?0
?[
?? (h)-?? (0)
h
]=2×?? '
(0)=2×3=6.
 
Q2:  If ?? (?? )=?? ,?? '
(?? )=-?? ,?? (?? )=-?? ,?? '
(?? )=?? , then ?????? ?? ??? ?
?? (?? )?? (?? )-?? (?? )?? (?? )
?? -?? = 
(a) -5 
(b) 10 
(c) -10 
(d) 5 
Ans: (b) lim
?? ??? ?
?? (?? )?? (?? )-?? (?? )?? (?? )
?? -?? . We add and subtract ?? (?? )?? (?? ) in numerator 
 = lim
?? ??? ?
?? (?? )?? (?? )-?? (?? )?? (?? )+?? (?? )?? (?? )-?? (?? )?? (?? )
?? -?? = lim
?? ??? ??? (?? )[
?? (?? )-?? (?? )
?? -?? ]- lim
?? ??? ??? (?? )[
?? (?? )-?? (?? )
?? -?? ]
 = ?? (?? )lim
?? ??? ?[
?? (?? )-?? (?? )
?? -?? ]-?? (?? )lim
?? ??? ?[
?? (?? )-?? (?? )
?? -?? ] = ?? (?? )?? '
(?? )-?? (?? )?? '
(?? )  [by using first principle formula] 
 = 3.4-(-1)(-2)= 12-2= 10
 
[by using first principle formula] 
Trick : lim
?? ??? ?
?? (?? )?? (?? )-?? (?? )?? (?? )
?? -?? 
Using L-Hospital's rule, Limit =lim
?? ??? ?
?? '
(?? )?? (?? )-?? (?? )?? '
(?? )
1
; 
Limit =?? '
(?? )?? (?? )-?? (?? )?? '
(?? )=(4)(3)-(-1)(-2)=12-2=10. 
 
Q3:  If ?? ?? (?? )+?? ?? (
?? ?? )=?? +?? and ?? =???? (?? ) then (
????
????
)
?? =?? is equal to 
(a) 14 
(b) 
?? ?? 
(c) 1 
(d) None of these 
Ans: (b)  ?5?? (?? )+3?? (
1
?? )=?? +2   
Replacing ?? by 
1
?? in (i), 5?? (
1
?? )+3?? (?? )=
1
?? +2 
On solving equation (i) and (ii), we get, 16?? (?? )=5?? -
3
?? +4,?16?? '
(?? )=5+
3
?? 2
 
 ??? =???? (?? )?
????
????
=?? (?? )+?? ?? '
(?? )=
1
16
(5?? -
3
?? +4)+?? ·
1
16
(5+
3
?? 2
)
 at ?? =1,
????
????
=
1
16
(5-3+4)+
1
16
(5+3)=
7
8
.
 
Q4: The derivative of ?? (?? )=?? |
?? at ?? =?? is 
(a) ?? 
(b) 1 
(c) -1 
(d) Not defined 
Ans:   (a)  ?? (?? )={
?? 3
,?? =0
-?? 3
, ?? <0
  and  ?? '
(?? )={
3?? 2
,?? =0
-3?? 2
,?? <0
 
 
?? '
(0
+
)=?? '
(0
-
)=0 
 
Q5: Example: 6 The first derivative of the function (?????? ?? ?? ?????? ?? ?? ?????? ?? ?? +??????
?? ?? ?? +?? ) with 
respect to ?? at ?? =?? is 
(a) 2 
(b) -1 
(c) -?? +?? ?? ?????? ?? ?? 
(d) -?? +??????
?? ?? 
Ans: (b)  ?? (?? )=sin 2?? ·cos 2?? ·cos 3?? +log
2
 2
?? +3
, ?? (?? )=
1
2
sin 4?? cos 3?? +(?? +
3)log
2
 2, ?? (?? )=
1
4
[sin 7?? +sin ?? ]+?? +3 
Differentiate w.r.t. ?? , 
?? '
(?? )=
1
4
[7cos 7?? +cos ?? ]+1,?? '
(?? )=
1
4
7cos 7?? +
1
4
cos ?? +1, ?? '
(?? )=-2+1=-1. 
 
 
 
Q6: ?? is a point on the circumference of a circle & ?? is the foot of the perpendicular from ?? on a 
fixed diameter ???? . Then the limit of 
?? ?? ?? ????
 as ?? tends to ?? along the circumference 
(A) Does not exist 
(B) Equal to one 
(C) Is equal to the length ???? 
(D) None 
Ans: (C) 
Hint: ?? ?? 2
=???? ×????  
 
 Q8: ?????? ?? ??? ?(?? +??????
?????? 
?? ?? ?? ?????? ?? ) 
 
(A) Is equal to 4 (B) Is equal to 25 
(C) Is equal to 289 (D) Is non existent 
 
 
Ans: (C) 
 lim
?? ?0
?(1+log
cos 
?? 2
2
 cos ?? )
2
 lim
?? ?0
?log
cos 
?? 2
 cos ?? =lim
?? ?0
?
log (cos ?? )
log (cos 
?? 2
)
 =lim
?? ?0
?
-sin ?? cos ?? 1
2
sin ?? /2
cos ?? /2
=lim
?? ?0
?
4cos
2
 
?? 2
cos ?? =4
 
 
Q9: ?????? ?? ??? ?
(?? +?? )
?? ?? -?? (?? +?? )
?? ?? -?? is 
(A) 1 
(B) 0 
(C) ?? /?? 
(D) 8 
Ans: (C) Use lim
?? ??? ?
?? ?? -?? ?? ?? -?? =?? ?? ?? -1
 
Q10: Centre of circle is the limit of point of intersection of tines ?? ?? +?? ?? =?? and (?? +?? )?? +
?? ?? ?? ?? =?? as ?? tends to 1 . If it passes through (?? ,?? ) its radius is - 
(A) 
v????????
????
 
(B) 
????
????
 
Page 4


Solved Example on Limit Continuity and 
Derivative 
JEE Mains 
Q1:  If ?? (?? +?? )=?? (?? )·?? (?? ) for all ?? and ?? and ?? (?? )=?? ,?? '
(?? )=?? , then ?? '
(?? ) will be 
(a) 2 
(b) 4 
(c) 6 
(d) 8 
Ans: (c) Let ?? =5,?? =0??? (5+0)=?? (5)·?? (0) 
??? (5)=?? (5)?? (0)??? (0)=1 
Therefore, ?? '
(5)=lim
h?0
?
?? (5+h)-?? (5)
h
=lim
h?0
?
?? (5)?? (h)-?? (5)
h
=lim
h?0
?2[
?? (h)-1
h
] 
 Therefore, ?? '
(5)=lim
h?0
?
?? (5+h)-?? (5)
h
=lim
h?0
?
?? (5)?? (h)-?? (5)
h
=lim
h?0
?2[
?? (h)-1
h
] {??? (5)=2}
 =2lim
h?0
?[
?? (h)-?? (0)
h
]=2×?? '
(0)=2×3=6.
 
Q2:  If ?? (?? )=?? ,?? '
(?? )=-?? ,?? (?? )=-?? ,?? '
(?? )=?? , then ?????? ?? ??? ?
?? (?? )?? (?? )-?? (?? )?? (?? )
?? -?? = 
(a) -5 
(b) 10 
(c) -10 
(d) 5 
Ans: (b) lim
?? ??? ?
?? (?? )?? (?? )-?? (?? )?? (?? )
?? -?? . We add and subtract ?? (?? )?? (?? ) in numerator 
 = lim
?? ??? ?
?? (?? )?? (?? )-?? (?? )?? (?? )+?? (?? )?? (?? )-?? (?? )?? (?? )
?? -?? = lim
?? ??? ??? (?? )[
?? (?? )-?? (?? )
?? -?? ]- lim
?? ??? ??? (?? )[
?? (?? )-?? (?? )
?? -?? ]
 = ?? (?? )lim
?? ??? ?[
?? (?? )-?? (?? )
?? -?? ]-?? (?? )lim
?? ??? ?[
?? (?? )-?? (?? )
?? -?? ] = ?? (?? )?? '
(?? )-?? (?? )?? '
(?? )  [by using first principle formula] 
 = 3.4-(-1)(-2)= 12-2= 10
 
[by using first principle formula] 
Trick : lim
?? ??? ?
?? (?? )?? (?? )-?? (?? )?? (?? )
?? -?? 
Using L-Hospital's rule, Limit =lim
?? ??? ?
?? '
(?? )?? (?? )-?? (?? )?? '
(?? )
1
; 
Limit =?? '
(?? )?? (?? )-?? (?? )?? '
(?? )=(4)(3)-(-1)(-2)=12-2=10. 
 
Q3:  If ?? ?? (?? )+?? ?? (
?? ?? )=?? +?? and ?? =???? (?? ) then (
????
????
)
?? =?? is equal to 
(a) 14 
(b) 
?? ?? 
(c) 1 
(d) None of these 
Ans: (b)  ?5?? (?? )+3?? (
1
?? )=?? +2   
Replacing ?? by 
1
?? in (i), 5?? (
1
?? )+3?? (?? )=
1
?? +2 
On solving equation (i) and (ii), we get, 16?? (?? )=5?? -
3
?? +4,?16?? '
(?? )=5+
3
?? 2
 
 ??? =???? (?? )?
????
????
=?? (?? )+?? ?? '
(?? )=
1
16
(5?? -
3
?? +4)+?? ·
1
16
(5+
3
?? 2
)
 at ?? =1,
????
????
=
1
16
(5-3+4)+
1
16
(5+3)=
7
8
.
 
Q4: The derivative of ?? (?? )=?? |
?? at ?? =?? is 
(a) ?? 
(b) 1 
(c) -1 
(d) Not defined 
Ans:   (a)  ?? (?? )={
?? 3
,?? =0
-?? 3
, ?? <0
  and  ?? '
(?? )={
3?? 2
,?? =0
-3?? 2
,?? <0
 
 
?? '
(0
+
)=?? '
(0
-
)=0 
 
Q5: Example: 6 The first derivative of the function (?????? ?? ?? ?????? ?? ?? ?????? ?? ?? +??????
?? ?? ?? +?? ) with 
respect to ?? at ?? =?? is 
(a) 2 
(b) -1 
(c) -?? +?? ?? ?????? ?? ?? 
(d) -?? +??????
?? ?? 
Ans: (b)  ?? (?? )=sin 2?? ·cos 2?? ·cos 3?? +log
2
 2
?? +3
, ?? (?? )=
1
2
sin 4?? cos 3?? +(?? +
3)log
2
 2, ?? (?? )=
1
4
[sin 7?? +sin ?? ]+?? +3 
Differentiate w.r.t. ?? , 
?? '
(?? )=
1
4
[7cos 7?? +cos ?? ]+1,?? '
(?? )=
1
4
7cos 7?? +
1
4
cos ?? +1, ?? '
(?? )=-2+1=-1. 
 
 
 
Q6: ?? is a point on the circumference of a circle & ?? is the foot of the perpendicular from ?? on a 
fixed diameter ???? . Then the limit of 
?? ?? ?? ????
 as ?? tends to ?? along the circumference 
(A) Does not exist 
(B) Equal to one 
(C) Is equal to the length ???? 
(D) None 
Ans: (C) 
Hint: ?? ?? 2
=???? ×????  
 
 Q8: ?????? ?? ??? ?(?? +??????
?????? 
?? ?? ?? ?????? ?? ) 
 
(A) Is equal to 4 (B) Is equal to 25 
(C) Is equal to 289 (D) Is non existent 
 
 
Ans: (C) 
 lim
?? ?0
?(1+log
cos 
?? 2
2
 cos ?? )
2
 lim
?? ?0
?log
cos 
?? 2
 cos ?? =lim
?? ?0
?
log (cos ?? )
log (cos 
?? 2
)
 =lim
?? ?0
?
-sin ?? cos ?? 1
2
sin ?? /2
cos ?? /2
=lim
?? ?0
?
4cos
2
 
?? 2
cos ?? =4
 
 
Q9: ?????? ?? ??? ?
(?? +?? )
?? ?? -?? (?? +?? )
?? ?? -?? is 
(A) 1 
(B) 0 
(C) ?? /?? 
(D) 8 
Ans: (C) Use lim
?? ??? ?
?? ?? -?? ?? ?? -?? =?? ?? ?? -1
 
Q10: Centre of circle is the limit of point of intersection of tines ?? ?? +?? ?? =?? and (?? +?? )?? +
?? ?? ?? ?? =?? as ?? tends to 1 . If it passes through (?? ,?? ) its radius is - 
(A) 
v????????
????
 
(B) 
????
????
 
(C) 
????????
v????
 
(D) v
????????
????
 
Ans: (A) On solving for x and y we get 
?? =lim
?? ?1
?
1-?? 2
2+?? -3?? 2
lim
?? ?1
?
(1-?? )(1+?? )
(2+3?? )(1-?? )
=
2
5
 ??? =-
1
25
 
Now, radius can be found by distance formula. 
 
Q11:  The function ?? (?? ) is defined as follows ?? (?? )={
?? if ?? <?? ?? ?? if ?? =?? =?? ?? ?? -?? +?? if ?? >?? then ?? (?? ) is 
(A) Derivable and cont. at ?? =?? 
(B) Derivable at ?? =?? but not continuous at ?? =?? 
(C) Neither derivable nor cont. at ?? =?? 
(D) Not derivable at ?? =?? but continuous at ?? =?? 
Ans: (D) ?? (?? )={
?? ?? <0
?? 2
, 0=?? =1
?? 3
-?? +1, ?? >0
 
At ?? =0 
LHL=lim
?? ?0
-??? (?? )=lim
?? ?0
-??? =0 
 
 
 
Q12:  A function ?? defined as ?? (?? )=?? [?? ] for -?? =?? =?? where [?? ] defines the greatest integer 
=?? is 
(A) Continuous at all points in the domain of ?? but nonderivable at a finite number of points 
(B) Discontinuous at all points & hence non -derivable at all points in the domain of ?? 
(C) Discontinuous at a finite number of points but not derivable at all points in the domain of ?? 
(D) Discontinuous & also non -derivable at a finite number of points of ?? . 
Ans: (D) Discontinuous & also non -derivable at a finite number of points of ?? . 
Q13: The value of ?????? ?? ??? ?
(?? +?? )
?? ?? -(?? -?? )
?? ?? ?? is: 
(A) ?? /?? 
(B) ?? /?? 
(C) 1 
(D) ?? /?? 
Ans: (A) 
Page 5


Solved Example on Limit Continuity and 
Derivative 
JEE Mains 
Q1:  If ?? (?? +?? )=?? (?? )·?? (?? ) for all ?? and ?? and ?? (?? )=?? ,?? '
(?? )=?? , then ?? '
(?? ) will be 
(a) 2 
(b) 4 
(c) 6 
(d) 8 
Ans: (c) Let ?? =5,?? =0??? (5+0)=?? (5)·?? (0) 
??? (5)=?? (5)?? (0)??? (0)=1 
Therefore, ?? '
(5)=lim
h?0
?
?? (5+h)-?? (5)
h
=lim
h?0
?
?? (5)?? (h)-?? (5)
h
=lim
h?0
?2[
?? (h)-1
h
] 
 Therefore, ?? '
(5)=lim
h?0
?
?? (5+h)-?? (5)
h
=lim
h?0
?
?? (5)?? (h)-?? (5)
h
=lim
h?0
?2[
?? (h)-1
h
] {??? (5)=2}
 =2lim
h?0
?[
?? (h)-?? (0)
h
]=2×?? '
(0)=2×3=6.
 
Q2:  If ?? (?? )=?? ,?? '
(?? )=-?? ,?? (?? )=-?? ,?? '
(?? )=?? , then ?????? ?? ??? ?
?? (?? )?? (?? )-?? (?? )?? (?? )
?? -?? = 
(a) -5 
(b) 10 
(c) -10 
(d) 5 
Ans: (b) lim
?? ??? ?
?? (?? )?? (?? )-?? (?? )?? (?? )
?? -?? . We add and subtract ?? (?? )?? (?? ) in numerator 
 = lim
?? ??? ?
?? (?? )?? (?? )-?? (?? )?? (?? )+?? (?? )?? (?? )-?? (?? )?? (?? )
?? -?? = lim
?? ??? ??? (?? )[
?? (?? )-?? (?? )
?? -?? ]- lim
?? ??? ??? (?? )[
?? (?? )-?? (?? )
?? -?? ]
 = ?? (?? )lim
?? ??? ?[
?? (?? )-?? (?? )
?? -?? ]-?? (?? )lim
?? ??? ?[
?? (?? )-?? (?? )
?? -?? ] = ?? (?? )?? '
(?? )-?? (?? )?? '
(?? )  [by using first principle formula] 
 = 3.4-(-1)(-2)= 12-2= 10
 
[by using first principle formula] 
Trick : lim
?? ??? ?
?? (?? )?? (?? )-?? (?? )?? (?? )
?? -?? 
Using L-Hospital's rule, Limit =lim
?? ??? ?
?? '
(?? )?? (?? )-?? (?? )?? '
(?? )
1
; 
Limit =?? '
(?? )?? (?? )-?? (?? )?? '
(?? )=(4)(3)-(-1)(-2)=12-2=10. 
 
Q3:  If ?? ?? (?? )+?? ?? (
?? ?? )=?? +?? and ?? =???? (?? ) then (
????
????
)
?? =?? is equal to 
(a) 14 
(b) 
?? ?? 
(c) 1 
(d) None of these 
Ans: (b)  ?5?? (?? )+3?? (
1
?? )=?? +2   
Replacing ?? by 
1
?? in (i), 5?? (
1
?? )+3?? (?? )=
1
?? +2 
On solving equation (i) and (ii), we get, 16?? (?? )=5?? -
3
?? +4,?16?? '
(?? )=5+
3
?? 2
 
 ??? =???? (?? )?
????
????
=?? (?? )+?? ?? '
(?? )=
1
16
(5?? -
3
?? +4)+?? ·
1
16
(5+
3
?? 2
)
 at ?? =1,
????
????
=
1
16
(5-3+4)+
1
16
(5+3)=
7
8
.
 
Q4: The derivative of ?? (?? )=?? |
?? at ?? =?? is 
(a) ?? 
(b) 1 
(c) -1 
(d) Not defined 
Ans:   (a)  ?? (?? )={
?? 3
,?? =0
-?? 3
, ?? <0
  and  ?? '
(?? )={
3?? 2
,?? =0
-3?? 2
,?? <0
 
 
?? '
(0
+
)=?? '
(0
-
)=0 
 
Q5: Example: 6 The first derivative of the function (?????? ?? ?? ?????? ?? ?? ?????? ?? ?? +??????
?? ?? ?? +?? ) with 
respect to ?? at ?? =?? is 
(a) 2 
(b) -1 
(c) -?? +?? ?? ?????? ?? ?? 
(d) -?? +??????
?? ?? 
Ans: (b)  ?? (?? )=sin 2?? ·cos 2?? ·cos 3?? +log
2
 2
?? +3
, ?? (?? )=
1
2
sin 4?? cos 3?? +(?? +
3)log
2
 2, ?? (?? )=
1
4
[sin 7?? +sin ?? ]+?? +3 
Differentiate w.r.t. ?? , 
?? '
(?? )=
1
4
[7cos 7?? +cos ?? ]+1,?? '
(?? )=
1
4
7cos 7?? +
1
4
cos ?? +1, ?? '
(?? )=-2+1=-1. 
 
 
 
Q6: ?? is a point on the circumference of a circle & ?? is the foot of the perpendicular from ?? on a 
fixed diameter ???? . Then the limit of 
?? ?? ?? ????
 as ?? tends to ?? along the circumference 
(A) Does not exist 
(B) Equal to one 
(C) Is equal to the length ???? 
(D) None 
Ans: (C) 
Hint: ?? ?? 2
=???? ×????  
 
 Q8: ?????? ?? ??? ?(?? +??????
?????? 
?? ?? ?? ?????? ?? ) 
 
(A) Is equal to 4 (B) Is equal to 25 
(C) Is equal to 289 (D) Is non existent 
 
 
Ans: (C) 
 lim
?? ?0
?(1+log
cos 
?? 2
2
 cos ?? )
2
 lim
?? ?0
?log
cos 
?? 2
 cos ?? =lim
?? ?0
?
log (cos ?? )
log (cos 
?? 2
)
 =lim
?? ?0
?
-sin ?? cos ?? 1
2
sin ?? /2
cos ?? /2
=lim
?? ?0
?
4cos
2
 
?? 2
cos ?? =4
 
 
Q9: ?????? ?? ??? ?
(?? +?? )
?? ?? -?? (?? +?? )
?? ?? -?? is 
(A) 1 
(B) 0 
(C) ?? /?? 
(D) 8 
Ans: (C) Use lim
?? ??? ?
?? ?? -?? ?? ?? -?? =?? ?? ?? -1
 
Q10: Centre of circle is the limit of point of intersection of tines ?? ?? +?? ?? =?? and (?? +?? )?? +
?? ?? ?? ?? =?? as ?? tends to 1 . If it passes through (?? ,?? ) its radius is - 
(A) 
v????????
????
 
(B) 
????
????
 
(C) 
????????
v????
 
(D) v
????????
????
 
Ans: (A) On solving for x and y we get 
?? =lim
?? ?1
?
1-?? 2
2+?? -3?? 2
lim
?? ?1
?
(1-?? )(1+?? )
(2+3?? )(1-?? )
=
2
5
 ??? =-
1
25
 
Now, radius can be found by distance formula. 
 
Q11:  The function ?? (?? ) is defined as follows ?? (?? )={
?? if ?? <?? ?? ?? if ?? =?? =?? ?? ?? -?? +?? if ?? >?? then ?? (?? ) is 
(A) Derivable and cont. at ?? =?? 
(B) Derivable at ?? =?? but not continuous at ?? =?? 
(C) Neither derivable nor cont. at ?? =?? 
(D) Not derivable at ?? =?? but continuous at ?? =?? 
Ans: (D) ?? (?? )={
?? ?? <0
?? 2
, 0=?? =1
?? 3
-?? +1, ?? >0
 
At ?? =0 
LHL=lim
?? ?0
-??? (?? )=lim
?? ?0
-??? =0 
 
 
 
Q12:  A function ?? defined as ?? (?? )=?? [?? ] for -?? =?? =?? where [?? ] defines the greatest integer 
=?? is 
(A) Continuous at all points in the domain of ?? but nonderivable at a finite number of points 
(B) Discontinuous at all points & hence non -derivable at all points in the domain of ?? 
(C) Discontinuous at a finite number of points but not derivable at all points in the domain of ?? 
(D) Discontinuous & also non -derivable at a finite number of points of ?? . 
Ans: (D) Discontinuous & also non -derivable at a finite number of points of ?? . 
Q13: The value of ?????? ?? ??? ?
(?? +?? )
?? ?? -(?? -?? )
?? ?? ?? is: 
(A) ?? /?? 
(B) ?? /?? 
(C) 1 
(D) ?? /?? 
Ans: (A) 
 lim
?? ?0
?
(1+?? )
1
3
-(1-?? )
1
3
?? (1+?? )
2/3
+(1-?? )
2/3
+(1+?? )
1/3
(1-?? )
1/3
(1+?? )
2/3
+(1-?? )
2/3
+(1+?? )
1/3
(1-?? )
1/3
 =lim
?? ?0
?
(1+?? )-(1-?? )
(1+?? )
2/3
+(1-?? )
2/3
+(1+?? )
1/3
(1-?? )
1/3
·
1
?? =lim
?? ?0
?
2
(1+?? )
2/3
+(1-?? )
2/3
+(1+?? )
1/3
(1-?? )
1/3
=
2
1+1+1
=
2
3
 
Hence, (A) is the correct answer. 
 
 
Q14: The values of ?? and ?? so that function ?? (?? ) defined by ?? (?? )=
{
 
 
?? +?? v?? ?????? ?? , ?? =?? <
?? ?? ?? ?? ?????? ?? +?? ,
?? ?? =?? <
?? ?? ?? ?????? ?? ?? -?? ?????? ?? ,
?? ?? =?? =?? become continuous, respectively are 
(A) 
-?? ????
,
?? ?? 
(B) 
?? ?? ,
-?? ????
 
(C) 
?? ????
,
?? ?? 
(D) 
?? ?? ,
?? ????
 
Ans: (B) 
?? (?? )={
?? +?? v2sin ?? 0=?? <?? /4
2?? cot ?? +?? ?? /4=?? <?? /2
?? cos 2?? -?? sin ?? ?? /2=?? =?? 
L.H. limit at ?? <
?? 4
 
 = lim
?? ??? /4
?x+Av2sin x=
?? 4
+Av2sin 
?? 4
=
?? 4
+Av2×
1
v2
=A+
?? 4
 R.H. limit = lim
x??? /4
?2xcot x+B=
2?? 4
·cot 
?? 4
+B=
?? 2
+B
 
?? +
?? 4
=?? +
?? 2
??? -?? =
?? 4
 
 L.H. limit at ?? <
?? 2
 = lim
?? ??? /2
?-(2?? cot ?? +?? )=2×
?? 2
cot 
?? 2
+?? =?? RH limit =?? lim
?? ??? /2
?+?? cos 2?? -?? sin ?? =?? cos ?? -?? sin 
?? 2
 
Q15: If ?? (?? )=(
?? ?? +?? ?? +?? ?? ?? +?? +?? )
?? , then ?????? ?? ?8
??? (?? ) is 
(A) ?? ?? 
(B) ?? ?? 
Read More
209 videos|443 docs|143 tests

Top Courses for JEE

209 videos|443 docs|143 tests
Download as PDF
Explore Courses for JEE exam

Top Courses for JEE

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Previous Year Questions with Solutions

,

Objective type Questions

,

Semester Notes

,

shortcuts and tricks

,

ppt

,

Sample Paper

,

mock tests for examination

,

Solved Example: Limit Continuity and Derivative | Mathematics (Maths) for JEE Main & Advanced

,

Exam

,

Viva Questions

,

pdf

,

study material

,

Free

,

Summary

,

Extra Questions

,

past year papers

,

MCQs

,

Important questions

,

Solved Example: Limit Continuity and Derivative | Mathematics (Maths) for JEE Main & Advanced

,

video lectures

,

Solved Example: Limit Continuity and Derivative | Mathematics (Maths) for JEE Main & Advanced

,

practice quizzes

;