JEE Exam  >  JEE Notes  >  Mathematics (Maths) for JEE Main & Advanced  >  Solved Examples: Hyperbola

Solved Examples: Hyperbola | Mathematics (Maths) for JEE Main & Advanced PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


Solved Examples on Hyperbola 
Q1: The equation of the conic with focus at (?? , -?? ), directrix along ?? - ?? +
?? = ?? and with eccentricity v ?? is 
(a) ?? ?? - ?? ?? = ?? 
(b) ???? = ?? 
(c) ?? ???? - ?? ?? + ?? ?? + ?? = ?? 
(d) ?? ???? + ?? ?? - ?? ?? - ?? = ?? 
Ans: (c) 
Sol: Here, focus (?? ) = (1, -1), eccentricity (?? ) = v 2 
From definition, ???? = ?????? 
v(?? - 1)
2
+ (?? + 1)
2
=
v 2 · (?? - ?? + 1)
v1
2
+ 1
2
 
? (?? - 1)
2
+ (?? + 1)
2
= (?? - ?? + 1)
2
? 2???? - 4?? + 4?? + 1 = 0, which is the 
required equation of conic (Rectangular hyperbola) 
Q2: If the foci of the ellipse 
?? ?? ????
+
?? ?? ?? ?? = ?? and the hyperbola 
?? ?? ??????
-
?? ?? ????
=
?? ????
 
coincide, then the value of ?? ?? is 
(a) 1 
(b) 5 
(c) 7 
(d) 9 
Ans: (c) 
Sol: 
For hyperbola, 
?? 2
144
-
?? 2
81
=
1
25
 
?? =
v
144
25
, ?? =
v
81
25
, ?? 1
=
v
1 +
?? 2
?? 2
=
v
1 +
81
144
=
v
225
144
=
5
4
 
Therefore foci = (±?? ?? 1
, 0) = (±
12
5
·
5
4
, 0) = (±3,0). Therefore foci of ellipse i.e., 
(±4?? , 0) = (±3,0)  (For ellipse ?? = 4) ? ?? =
3
4
, Hence ?? 2
= 16(1 -
9
16
) = 7. 
Page 2


Solved Examples on Hyperbola 
Q1: The equation of the conic with focus at (?? , -?? ), directrix along ?? - ?? +
?? = ?? and with eccentricity v ?? is 
(a) ?? ?? - ?? ?? = ?? 
(b) ???? = ?? 
(c) ?? ???? - ?? ?? + ?? ?? + ?? = ?? 
(d) ?? ???? + ?? ?? - ?? ?? - ?? = ?? 
Ans: (c) 
Sol: Here, focus (?? ) = (1, -1), eccentricity (?? ) = v 2 
From definition, ???? = ?????? 
v(?? - 1)
2
+ (?? + 1)
2
=
v 2 · (?? - ?? + 1)
v1
2
+ 1
2
 
? (?? - 1)
2
+ (?? + 1)
2
= (?? - ?? + 1)
2
? 2???? - 4?? + 4?? + 1 = 0, which is the 
required equation of conic (Rectangular hyperbola) 
Q2: If the foci of the ellipse 
?? ?? ????
+
?? ?? ?? ?? = ?? and the hyperbola 
?? ?? ??????
-
?? ?? ????
=
?? ????
 
coincide, then the value of ?? ?? is 
(a) 1 
(b) 5 
(c) 7 
(d) 9 
Ans: (c) 
Sol: 
For hyperbola, 
?? 2
144
-
?? 2
81
=
1
25
 
?? =
v
144
25
, ?? =
v
81
25
, ?? 1
=
v
1 +
?? 2
?? 2
=
v
1 +
81
144
=
v
225
144
=
5
4
 
Therefore foci = (±?? ?? 1
, 0) = (±
12
5
·
5
4
, 0) = (±3,0). Therefore foci of ellipse i.e., 
(±4?? , 0) = (±3,0)  (For ellipse ?? = 4) ? ?? =
3
4
, Hence ?? 2
= 16(1 -
9
16
) = 7. 
Q3: If ???? is a double ordinate of hyperbola 
?? ?? ?? ?? -
?? ?? ?? ?? = ?? such that ?????? is an 
equilateral triangle, ?? being the centre of the hyperbola. Then the 
eccentricity ?? of the hyperbola satisfies 
(a) ?? < ?? < ?? /v ?? 
(b) ?? = ?? /v ?? 
(c) ?? = v ?? /?? 
(d) ?? > ?? /v ?? 
Ans: (d) 
Sol: 
 
Let ?? (?? sec ?? , ?? tan ?? ); ?? (?? sec ?? , -?? tan ?? ) be end points of double ordinates and 
?? (0,0) is the centre of the hyperbola 
Now ???? = 2?? tan ?? ; ???? = ???? = v?? 2
sec
2
 ?? + ?? 2
tan
2
 ?? 
Since ???? = ???? = ???? , ? 4?? 2
tan
2
 ?? = ?? 2
sec
2
 ?? + ?? 2
tan
2
 ?? 
? 3?? 2
tan
2
 ?? = ?? 2
sec
2
 ?? ? 3?? 2
sin
2
 ?? = ?? 2
 
? 3?? 2
(?? 2
- 1)sin
2
 ?? = ?? 2
= 3(?? 2
- 1)sin
2
 ?? = 1 
?
1
3(?? 2
- 1)
= sin
2
 ?? < 1 (? sin
2
 ?? < 1) 
?
1
?? 2
- 1
< 3 ? ?? 2
- 1 >
1
3
= ?? 2
>
4
3
? ?? >
2
v 3
 
Q4: The eccentricity of the conjugate hyperbola of the hyperbola ?? ?? - ?? ?? ?? =
?? , is 
(a) 2 
(b) 
?? v ?? 
(c) 4 
Page 3


Solved Examples on Hyperbola 
Q1: The equation of the conic with focus at (?? , -?? ), directrix along ?? - ?? +
?? = ?? and with eccentricity v ?? is 
(a) ?? ?? - ?? ?? = ?? 
(b) ???? = ?? 
(c) ?? ???? - ?? ?? + ?? ?? + ?? = ?? 
(d) ?? ???? + ?? ?? - ?? ?? - ?? = ?? 
Ans: (c) 
Sol: Here, focus (?? ) = (1, -1), eccentricity (?? ) = v 2 
From definition, ???? = ?????? 
v(?? - 1)
2
+ (?? + 1)
2
=
v 2 · (?? - ?? + 1)
v1
2
+ 1
2
 
? (?? - 1)
2
+ (?? + 1)
2
= (?? - ?? + 1)
2
? 2???? - 4?? + 4?? + 1 = 0, which is the 
required equation of conic (Rectangular hyperbola) 
Q2: If the foci of the ellipse 
?? ?? ????
+
?? ?? ?? ?? = ?? and the hyperbola 
?? ?? ??????
-
?? ?? ????
=
?? ????
 
coincide, then the value of ?? ?? is 
(a) 1 
(b) 5 
(c) 7 
(d) 9 
Ans: (c) 
Sol: 
For hyperbola, 
?? 2
144
-
?? 2
81
=
1
25
 
?? =
v
144
25
, ?? =
v
81
25
, ?? 1
=
v
1 +
?? 2
?? 2
=
v
1 +
81
144
=
v
225
144
=
5
4
 
Therefore foci = (±?? ?? 1
, 0) = (±
12
5
·
5
4
, 0) = (±3,0). Therefore foci of ellipse i.e., 
(±4?? , 0) = (±3,0)  (For ellipse ?? = 4) ? ?? =
3
4
, Hence ?? 2
= 16(1 -
9
16
) = 7. 
Q3: If ???? is a double ordinate of hyperbola 
?? ?? ?? ?? -
?? ?? ?? ?? = ?? such that ?????? is an 
equilateral triangle, ?? being the centre of the hyperbola. Then the 
eccentricity ?? of the hyperbola satisfies 
(a) ?? < ?? < ?? /v ?? 
(b) ?? = ?? /v ?? 
(c) ?? = v ?? /?? 
(d) ?? > ?? /v ?? 
Ans: (d) 
Sol: 
 
Let ?? (?? sec ?? , ?? tan ?? ); ?? (?? sec ?? , -?? tan ?? ) be end points of double ordinates and 
?? (0,0) is the centre of the hyperbola 
Now ???? = 2?? tan ?? ; ???? = ???? = v?? 2
sec
2
 ?? + ?? 2
tan
2
 ?? 
Since ???? = ???? = ???? , ? 4?? 2
tan
2
 ?? = ?? 2
sec
2
 ?? + ?? 2
tan
2
 ?? 
? 3?? 2
tan
2
 ?? = ?? 2
sec
2
 ?? ? 3?? 2
sin
2
 ?? = ?? 2
 
? 3?? 2
(?? 2
- 1)sin
2
 ?? = ?? 2
= 3(?? 2
- 1)sin
2
 ?? = 1 
?
1
3(?? 2
- 1)
= sin
2
 ?? < 1 (? sin
2
 ?? < 1) 
?
1
?? 2
- 1
< 3 ? ?? 2
- 1 >
1
3
= ?? 2
>
4
3
? ?? >
2
v 3
 
Q4: The eccentricity of the conjugate hyperbola of the hyperbola ?? ?? - ?? ?? ?? =
?? , is 
(a) 2 
(b) 
?? v ?? 
(c) 4 
(d) 
?? ?? 
Ans: (a) 
Sol: The given hyperbola is 
?? 2
1
-
?? 2
1/3
= 1. Here ?? 2
= 1 and ?? 2
=
1
3
 
Since ?? 2
= ?? 2
(?? 2
- 1) ?
1
3
= 1(?? 2
- 1) ? ?? 2
=
4
3
? ?? =
2
v 3
 
If ?? '
 is the eccentricity of the conjugate hyperbola, then 
1
?? 2
+
1
?? '2
= 1 ?
1
?? '2
= 1 -
1
?? 2
= 1 -
3
4
=
1
4
? ?? '
= 2. 
Q5:The distance between the directrices of the hyperbola ?? = ???????? ?? , ?? =
???????? ?? is 
(a) ???? v ?? 
(b) v ?? 
(c) ?? v ?? 
(d) ?? , v ?? 
Ans: (c) 
Sol: Equation of hyperbola is ?? = 8sec ?? , ?? = 8tan ?? ?
?? 8
= sec ?? ,
?? 8
= tan ?? 
? sec
2
 ?? - tan
2
 ?? = 1 ?
?? 2
8
2
-
?? 2
8
2
= 1 
Here ?? = 8, ?? = 8. Now ?? = v1 +
?? 2
?? 2
= v1 +
8
2
8
2
= v 2 
? Distance between directrices =
2?? ?? =
2×8
v 2
= 8v 2. 
Q6: If ?? ?? and ?? ?? are the slopes of the tangents to the hyperbola 
?? ?? ????
-
?? ?? ????
= ?? 
which pass through the point (?? , ?? ), then 
(a) ?? ?? + ?? ?? =
????
????
 
(b) ?? ?? ?? ?? =
????
????
 
(c) ?? ?? + ?? ?? =
????
????
 
(d) ?? ?? ?? ?? =
????
????
 
Ans: (a, b) 
Page 4


Solved Examples on Hyperbola 
Q1: The equation of the conic with focus at (?? , -?? ), directrix along ?? - ?? +
?? = ?? and with eccentricity v ?? is 
(a) ?? ?? - ?? ?? = ?? 
(b) ???? = ?? 
(c) ?? ???? - ?? ?? + ?? ?? + ?? = ?? 
(d) ?? ???? + ?? ?? - ?? ?? - ?? = ?? 
Ans: (c) 
Sol: Here, focus (?? ) = (1, -1), eccentricity (?? ) = v 2 
From definition, ???? = ?????? 
v(?? - 1)
2
+ (?? + 1)
2
=
v 2 · (?? - ?? + 1)
v1
2
+ 1
2
 
? (?? - 1)
2
+ (?? + 1)
2
= (?? - ?? + 1)
2
? 2???? - 4?? + 4?? + 1 = 0, which is the 
required equation of conic (Rectangular hyperbola) 
Q2: If the foci of the ellipse 
?? ?? ????
+
?? ?? ?? ?? = ?? and the hyperbola 
?? ?? ??????
-
?? ?? ????
=
?? ????
 
coincide, then the value of ?? ?? is 
(a) 1 
(b) 5 
(c) 7 
(d) 9 
Ans: (c) 
Sol: 
For hyperbola, 
?? 2
144
-
?? 2
81
=
1
25
 
?? =
v
144
25
, ?? =
v
81
25
, ?? 1
=
v
1 +
?? 2
?? 2
=
v
1 +
81
144
=
v
225
144
=
5
4
 
Therefore foci = (±?? ?? 1
, 0) = (±
12
5
·
5
4
, 0) = (±3,0). Therefore foci of ellipse i.e., 
(±4?? , 0) = (±3,0)  (For ellipse ?? = 4) ? ?? =
3
4
, Hence ?? 2
= 16(1 -
9
16
) = 7. 
Q3: If ???? is a double ordinate of hyperbola 
?? ?? ?? ?? -
?? ?? ?? ?? = ?? such that ?????? is an 
equilateral triangle, ?? being the centre of the hyperbola. Then the 
eccentricity ?? of the hyperbola satisfies 
(a) ?? < ?? < ?? /v ?? 
(b) ?? = ?? /v ?? 
(c) ?? = v ?? /?? 
(d) ?? > ?? /v ?? 
Ans: (d) 
Sol: 
 
Let ?? (?? sec ?? , ?? tan ?? ); ?? (?? sec ?? , -?? tan ?? ) be end points of double ordinates and 
?? (0,0) is the centre of the hyperbola 
Now ???? = 2?? tan ?? ; ???? = ???? = v?? 2
sec
2
 ?? + ?? 2
tan
2
 ?? 
Since ???? = ???? = ???? , ? 4?? 2
tan
2
 ?? = ?? 2
sec
2
 ?? + ?? 2
tan
2
 ?? 
? 3?? 2
tan
2
 ?? = ?? 2
sec
2
 ?? ? 3?? 2
sin
2
 ?? = ?? 2
 
? 3?? 2
(?? 2
- 1)sin
2
 ?? = ?? 2
= 3(?? 2
- 1)sin
2
 ?? = 1 
?
1
3(?? 2
- 1)
= sin
2
 ?? < 1 (? sin
2
 ?? < 1) 
?
1
?? 2
- 1
< 3 ? ?? 2
- 1 >
1
3
= ?? 2
>
4
3
? ?? >
2
v 3
 
Q4: The eccentricity of the conjugate hyperbola of the hyperbola ?? ?? - ?? ?? ?? =
?? , is 
(a) 2 
(b) 
?? v ?? 
(c) 4 
(d) 
?? ?? 
Ans: (a) 
Sol: The given hyperbola is 
?? 2
1
-
?? 2
1/3
= 1. Here ?? 2
= 1 and ?? 2
=
1
3
 
Since ?? 2
= ?? 2
(?? 2
- 1) ?
1
3
= 1(?? 2
- 1) ? ?? 2
=
4
3
? ?? =
2
v 3
 
If ?? '
 is the eccentricity of the conjugate hyperbola, then 
1
?? 2
+
1
?? '2
= 1 ?
1
?? '2
= 1 -
1
?? 2
= 1 -
3
4
=
1
4
? ?? '
= 2. 
Q5:The distance between the directrices of the hyperbola ?? = ???????? ?? , ?? =
???????? ?? is 
(a) ???? v ?? 
(b) v ?? 
(c) ?? v ?? 
(d) ?? , v ?? 
Ans: (c) 
Sol: Equation of hyperbola is ?? = 8sec ?? , ?? = 8tan ?? ?
?? 8
= sec ?? ,
?? 8
= tan ?? 
? sec
2
 ?? - tan
2
 ?? = 1 ?
?? 2
8
2
-
?? 2
8
2
= 1 
Here ?? = 8, ?? = 8. Now ?? = v1 +
?? 2
?? 2
= v1 +
8
2
8
2
= v 2 
? Distance between directrices =
2?? ?? =
2×8
v 2
= 8v 2. 
Q6: If ?? ?? and ?? ?? are the slopes of the tangents to the hyperbola 
?? ?? ????
-
?? ?? ????
= ?? 
which pass through the point (?? , ?? ), then 
(a) ?? ?? + ?? ?? =
????
????
 
(b) ?? ?? ?? ?? =
????
????
 
(c) ?? ?? + ?? ?? =
????
????
 
(d) ?? ?? ?? ?? =
????
????
 
Ans: (a, b) 
Sol: The line through (6,2) is ?? - 2 = ?? (?? - 6) ? ?? = ???? + 2 - 6?? 
Now, from condition of tangency (2 - 6?? )
2
= 25?? 2
- 16 
? 36?? 2
+ 4 - 24?? - 25?? 2
+ 16 = 0 ? 11?? 2
- 24?? + 20 = 0 
Obviously, its roots are ?? 1
 and ?? 2
, therefore ?? 1
+ ?? 2
=
24
11
 and ?? 1
?? 2
=
20
11
 
Q7: If the tangent at the point (???????? ?? , ???????? ?? ) on the hyperbola 
?? ?? ?? -
?? ?? ?? = ?? is 
parallel to ?? ?? - ?? + ?? = ?? , then the value of ?? is 
(a) ????
°
 
(b) ????
°
 
(c) ????
°
 
(d) ????
°
 
Ans: (c) 
Sol: Here ?? = 2sec ?? and ?? = 3tan ?? 
Differentiating w.r.t. ?? 
????
????
= 2sec ?? tan ?? and 
????
????
= 3sec
2
 ?? 
? Gradient of tangent 
????
????
=
???? /????
???? /????
=
3sec
2
 ?? 2sec ?? tan ?? ; ? 
????
????
=
3
2
cosec ?? 
But tangent is parallel to 3?? - ?? + 4 = 0; ? Gradient ?? = 3 
From (i) and (ii), 
3
2
cosec ?? = 3 ? cosec ?? = 2, ? ?? = 30
°
 
Q8: The locus of the point of intersection of tangents to the hyperbola 
?? ?? ?? - ?? ?? ?? = ???? which meet at a constant angle ?? /?? , is 
(a) (?? ?? + ?? ?? - ?? )
?? = ?? (?? ?? ?? - ?? ?? ?? + ???? ) 
(b) (?? ?? + ?? ?? - ?? ) = ?? (?? ?? ?? - ?? ?? ?? + ???? ) 
(c) ?? (?? ?? + ?? ?? - ?? )
?? = (?? ?? ?? - ?? ?? ?? + ???? ) 
(d) None of these 
Ans: (a) 
Sol: Let the point of intersection of tangents be ?? (?? 1
, ?? 1
). Then the equation of 
pair of tangents from ?? (?? 1
, ?? 1
) to the given hyperbola is (4?? 2
- 9?? 2
- 36)(4?? 1
2
-
9?? 1
2
- 36) = [4?? 1
?? - 9?? 1
?? - 36]
2
 
Page 5


Solved Examples on Hyperbola 
Q1: The equation of the conic with focus at (?? , -?? ), directrix along ?? - ?? +
?? = ?? and with eccentricity v ?? is 
(a) ?? ?? - ?? ?? = ?? 
(b) ???? = ?? 
(c) ?? ???? - ?? ?? + ?? ?? + ?? = ?? 
(d) ?? ???? + ?? ?? - ?? ?? - ?? = ?? 
Ans: (c) 
Sol: Here, focus (?? ) = (1, -1), eccentricity (?? ) = v 2 
From definition, ???? = ?????? 
v(?? - 1)
2
+ (?? + 1)
2
=
v 2 · (?? - ?? + 1)
v1
2
+ 1
2
 
? (?? - 1)
2
+ (?? + 1)
2
= (?? - ?? + 1)
2
? 2???? - 4?? + 4?? + 1 = 0, which is the 
required equation of conic (Rectangular hyperbola) 
Q2: If the foci of the ellipse 
?? ?? ????
+
?? ?? ?? ?? = ?? and the hyperbola 
?? ?? ??????
-
?? ?? ????
=
?? ????
 
coincide, then the value of ?? ?? is 
(a) 1 
(b) 5 
(c) 7 
(d) 9 
Ans: (c) 
Sol: 
For hyperbola, 
?? 2
144
-
?? 2
81
=
1
25
 
?? =
v
144
25
, ?? =
v
81
25
, ?? 1
=
v
1 +
?? 2
?? 2
=
v
1 +
81
144
=
v
225
144
=
5
4
 
Therefore foci = (±?? ?? 1
, 0) = (±
12
5
·
5
4
, 0) = (±3,0). Therefore foci of ellipse i.e., 
(±4?? , 0) = (±3,0)  (For ellipse ?? = 4) ? ?? =
3
4
, Hence ?? 2
= 16(1 -
9
16
) = 7. 
Q3: If ???? is a double ordinate of hyperbola 
?? ?? ?? ?? -
?? ?? ?? ?? = ?? such that ?????? is an 
equilateral triangle, ?? being the centre of the hyperbola. Then the 
eccentricity ?? of the hyperbola satisfies 
(a) ?? < ?? < ?? /v ?? 
(b) ?? = ?? /v ?? 
(c) ?? = v ?? /?? 
(d) ?? > ?? /v ?? 
Ans: (d) 
Sol: 
 
Let ?? (?? sec ?? , ?? tan ?? ); ?? (?? sec ?? , -?? tan ?? ) be end points of double ordinates and 
?? (0,0) is the centre of the hyperbola 
Now ???? = 2?? tan ?? ; ???? = ???? = v?? 2
sec
2
 ?? + ?? 2
tan
2
 ?? 
Since ???? = ???? = ???? , ? 4?? 2
tan
2
 ?? = ?? 2
sec
2
 ?? + ?? 2
tan
2
 ?? 
? 3?? 2
tan
2
 ?? = ?? 2
sec
2
 ?? ? 3?? 2
sin
2
 ?? = ?? 2
 
? 3?? 2
(?? 2
- 1)sin
2
 ?? = ?? 2
= 3(?? 2
- 1)sin
2
 ?? = 1 
?
1
3(?? 2
- 1)
= sin
2
 ?? < 1 (? sin
2
 ?? < 1) 
?
1
?? 2
- 1
< 3 ? ?? 2
- 1 >
1
3
= ?? 2
>
4
3
? ?? >
2
v 3
 
Q4: The eccentricity of the conjugate hyperbola of the hyperbola ?? ?? - ?? ?? ?? =
?? , is 
(a) 2 
(b) 
?? v ?? 
(c) 4 
(d) 
?? ?? 
Ans: (a) 
Sol: The given hyperbola is 
?? 2
1
-
?? 2
1/3
= 1. Here ?? 2
= 1 and ?? 2
=
1
3
 
Since ?? 2
= ?? 2
(?? 2
- 1) ?
1
3
= 1(?? 2
- 1) ? ?? 2
=
4
3
? ?? =
2
v 3
 
If ?? '
 is the eccentricity of the conjugate hyperbola, then 
1
?? 2
+
1
?? '2
= 1 ?
1
?? '2
= 1 -
1
?? 2
= 1 -
3
4
=
1
4
? ?? '
= 2. 
Q5:The distance between the directrices of the hyperbola ?? = ???????? ?? , ?? =
???????? ?? is 
(a) ???? v ?? 
(b) v ?? 
(c) ?? v ?? 
(d) ?? , v ?? 
Ans: (c) 
Sol: Equation of hyperbola is ?? = 8sec ?? , ?? = 8tan ?? ?
?? 8
= sec ?? ,
?? 8
= tan ?? 
? sec
2
 ?? - tan
2
 ?? = 1 ?
?? 2
8
2
-
?? 2
8
2
= 1 
Here ?? = 8, ?? = 8. Now ?? = v1 +
?? 2
?? 2
= v1 +
8
2
8
2
= v 2 
? Distance between directrices =
2?? ?? =
2×8
v 2
= 8v 2. 
Q6: If ?? ?? and ?? ?? are the slopes of the tangents to the hyperbola 
?? ?? ????
-
?? ?? ????
= ?? 
which pass through the point (?? , ?? ), then 
(a) ?? ?? + ?? ?? =
????
????
 
(b) ?? ?? ?? ?? =
????
????
 
(c) ?? ?? + ?? ?? =
????
????
 
(d) ?? ?? ?? ?? =
????
????
 
Ans: (a, b) 
Sol: The line through (6,2) is ?? - 2 = ?? (?? - 6) ? ?? = ???? + 2 - 6?? 
Now, from condition of tangency (2 - 6?? )
2
= 25?? 2
- 16 
? 36?? 2
+ 4 - 24?? - 25?? 2
+ 16 = 0 ? 11?? 2
- 24?? + 20 = 0 
Obviously, its roots are ?? 1
 and ?? 2
, therefore ?? 1
+ ?? 2
=
24
11
 and ?? 1
?? 2
=
20
11
 
Q7: If the tangent at the point (???????? ?? , ???????? ?? ) on the hyperbola 
?? ?? ?? -
?? ?? ?? = ?? is 
parallel to ?? ?? - ?? + ?? = ?? , then the value of ?? is 
(a) ????
°
 
(b) ????
°
 
(c) ????
°
 
(d) ????
°
 
Ans: (c) 
Sol: Here ?? = 2sec ?? and ?? = 3tan ?? 
Differentiating w.r.t. ?? 
????
????
= 2sec ?? tan ?? and 
????
????
= 3sec
2
 ?? 
? Gradient of tangent 
????
????
=
???? /????
???? /????
=
3sec
2
 ?? 2sec ?? tan ?? ; ? 
????
????
=
3
2
cosec ?? 
But tangent is parallel to 3?? - ?? + 4 = 0; ? Gradient ?? = 3 
From (i) and (ii), 
3
2
cosec ?? = 3 ? cosec ?? = 2, ? ?? = 30
°
 
Q8: The locus of the point of intersection of tangents to the hyperbola 
?? ?? ?? - ?? ?? ?? = ???? which meet at a constant angle ?? /?? , is 
(a) (?? ?? + ?? ?? - ?? )
?? = ?? (?? ?? ?? - ?? ?? ?? + ???? ) 
(b) (?? ?? + ?? ?? - ?? ) = ?? (?? ?? ?? - ?? ?? ?? + ???? ) 
(c) ?? (?? ?? + ?? ?? - ?? )
?? = (?? ?? ?? - ?? ?? ?? + ???? ) 
(d) None of these 
Ans: (a) 
Sol: Let the point of intersection of tangents be ?? (?? 1
, ?? 1
). Then the equation of 
pair of tangents from ?? (?? 1
, ?? 1
) to the given hyperbola is (4?? 2
- 9?? 2
- 36)(4?? 1
2
-
9?? 1
2
- 36) = [4?? 1
?? - 9?? 1
?? - 36]
2
 
From ?? ?? 1
= ?? 2
 or ?? 2
(?? 1
2
+ 4) + 2?? 1
?? 1
???? + ?? 2
(?? 1
2
- 9) + ? . = 0 
Since angle between the tangents is ?? /4. 
? tan (?? /4) =
2v[?? 1
2
?? 1
2
-(?? 1
2
+4)(?? 1
2
-9)]
?? 1
2
+4+?? 1
2
-9
. Hence locus of ?? (?? 1
, ?? 1
) is (?? 2
+ ?? 2
- 5)
2
=
4(9?? 2
- 4?? 2
+ 36). 
Q9: The locus of the mid-points of the chords of the circle ?? ?? + ?? ?? = ???? 
which are tangent to the hyperbola ?? ?? ?? - ???? ?? ?? = ?????? is 
(a) (?? ?? + ?? ?? )
?? = ???? ?? ?? - ?? ?? ?? 
(b) (?? ?? + ?? ?? )
?? = ?? ?? ?? - ???? ?? ?? 
(c) (?? ?? - ?? ?? )
?? = ???? ?? ?? - ?? ?? ?? 
(d) None of these 
Ans: (a) 
Sol: The given hyperbola is 
?? 2
16
-
?? 2
9
= 1 
Any tangent to (i) is ?? = ???? + v16?? 2
- 9 
Let (?? 1
, ?? 1
) be the mid point of the chord of the circle ?? 2
+ ?? 2
= 16 
Then equation of the chord is ?? = ?? 1
 i.e., ?? ?? 1
+ ?? ?? 1
- (?? 1
2
+ ?? 1
2
) = 0 
Since (ii) and (iii) represent the same line. 
? 
?? ?? 1
=
-1
?? 1
=
v16?? 2
- 9
-(?? 1
2
+ ?? 1
2
)
 
? ?? = -
?? 1
?? 1
 and (?? 1
2
+ ?? 1
2
)
2
= ?? 1
2
(16?? 2
- 9) ? (?? 1
2
+ ?? 1
2
)
2
= 16 ·
?? 1
2
?? 1
2
?? 1
2
- 9?? 1
2
=
16?? 1
2
- 9?? 1
2
 
? Locus of (?? 1
, ?? 1
) is (?? 2
+ ?? 2
)
2
= 16?? 2
- 9?? 2
. 
Q10: From any point on the hyperbola, 
?? ?? ?? ?? -
?? ?? ?? ?? = ?? tangents are drawn to the 
hyperbola  
?? ?? ?? ?? -
?? ?? ?? ?? = ?? . The area cut-off by the chord of contact on the 
asymptotes is equal to 
(a) 
????
?? 
(b) ???? 
(c) ?? ???? 
Read More
209 videos|443 docs|143 tests
209 videos|443 docs|143 tests
Download as PDF

Top Courses for JEE

Related Searches

Solved Examples: Hyperbola | Mathematics (Maths) for JEE Main & Advanced

,

video lectures

,

practice quizzes

,

pdf

,

study material

,

MCQs

,

Viva Questions

,

Solved Examples: Hyperbola | Mathematics (Maths) for JEE Main & Advanced

,

ppt

,

Objective type Questions

,

Solved Examples: Hyperbola | Mathematics (Maths) for JEE Main & Advanced

,

past year papers

,

shortcuts and tricks

,

Sample Paper

,

Exam

,

Extra Questions

,

Previous Year Questions with Solutions

,

Important questions

,

Free

,

mock tests for examination

,

Summary

,

Semester Notes

;