Chemistry Exam  >  Chemistry Notes  >  Physical Chemistry  >  Solved Practice Questions on Internal Energy, Work Done and Enthalpy

Solved Practice Questions on Internal Energy, Work Done and Enthalpy | Physical Chemistry PDF Download

Q.1. Why we cannot determine the exact or absolute value of internal energy?

It is impossible to determine an object's internal energy in its exact or absolute form. This is because most of the quantities that contribute to the system's internal energy are impossible to estimate with accuracy.


Q.2. Calculate the internal energy change in each of the following cases: -
(i) A system absorbs 25 kJ of heat and does 15 kJ of work.
(ii) 15 kJ of work is done on the system and 25 kJ of heat is given out by the system.

(i) Here, q= +25 kJ and w= -15 kJ
According to the first law of thermodynamics,
ΔE = q + w = +25 -15 = 10 kJ
This implies the internal energy of the system increases by 10 kJ.
(ii) Here, q= -25 kJ and w= +15 kJ
According to the first law of thermodynamics,
ΔE = q + w = -25 +15 = -10 kJ
This implies the internal energy of the system decreases by 10 kJ.


Q.3. A chemist while studying the properties of gaseous CCI2F2, a chlorofluorocarbon refrigerant cooled a 1.25 g sample at constant atmospheric pressure of 1.0 atm from 320 K to 293 K. During cooling, the sample volume decreased from 274 to 248 mL. Calculate ΔE for the chlorofluorocarbon for this process. For CCI2F2, C= 80.7 J/(mol K).

ΔH = qp and Cp is the heat evolved or absorbed per mole of 1o fall or rise in temperature.
Here, fall in temperature = 320-293 = 27 K.
Molar mass of CCI2F2 = 121 g/mol
Therefore, heat evolved from 1.25 g of the sample on being cooled from 320 K to 293 K at constant pressure =( 80.7/121) × 1.25 × 27 J = 22.51 J.
Further ΔH = ΔU + PΔV = -22.51 J
PΔV = 1 atm × [(248-274)/1000] L = -0.026 L atm = -0.026 × 101.35 J = -2.63 J
Therefore, -22.51 = ΔU + (-2.63) ΔU = -19.88 J


Q.4. Calculate the standard internal energy change for the reaction OF2 (g) + H2O (g)→ O2 (g) + 2HF (g) at 298 K, given that the enthalpies of formation of OF2(g), H2O(g) and HF(g) are +20, -250 and -270 kJ/mol respectively.

Step I. Calculation of standard enthalpy of reaction.
ΔHfo = ∑ΔHfo(products) - ∑ΔHfo(reactants)
ΔHfo = [ΔHfo(O2) + 2ΔHfo(HF)] - [ΔHfo(OF2) + ΔHfo(H2O)]
ΔHfo = [0 + 2(-270)] - [+20 + (-250)] kJ/mol
ΔHfo = -310 kJ/mol
Step II. Calculation of standard internal energy change.
For the given reaction,
Δng = (1+2) - (1+1) = 1
ΔHo = ΔUo + ΔngRT
Or ΔUo = ΔHo - ΔngRT
ΔUo = -310 - [(1) × (8.314× 10-3 kJK-1mol-1) × (298 K)]
ΔUo = -312.48 kJmol-1


Q.5. For the reaction of one mole of HCl with zinc dust in a bomb calorimeter, how does ΔU and ΔW corresponds?

The bomb calorimeter, which consists of a sealed combustion chamber known as a bomb, is frequently used to measure the heat of combustion of organic substances. No expansion or compression is allowed during a procedure if the container is sealed. so W = 0 and ΔU = q.


Q.6. For the reaction X2O4 (l) → 2XO2 (g) at 298 K, given the values, ΔU = 9 kJ and ΔS = 84 JK-1. Calculate ΔG.

Given reaction is X2O4 (l) → 2XO2 (g), T= 298 K
ΔU = 9 kJ and ΔS = 84 JK-1, ΔH = ?
Δng = 2-0 = 2
ΔH = ΔU+ ΔngRT = 9kJ + 2×8.314×298 = (9000 J + 4955.144) J = 13955.144 J
ΔG = ΔH - TΔS = 13955.144 J - (298 K × 84 JK-1) = -11076.856 J = -11.08 kJ

The document Solved Practice Questions on Internal Energy, Work Done and Enthalpy | Physical Chemistry is a part of the Chemistry Course Physical Chemistry.
All you need of Chemistry at this link: Chemistry
83 videos|142 docs|67 tests
83 videos|142 docs|67 tests
Download as PDF
Explore Courses for Chemistry exam
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

past year papers

,

Work Done and Enthalpy | Physical Chemistry

,

Free

,

MCQs

,

Previous Year Questions with Solutions

,

Summary

,

Sample Paper

,

Extra Questions

,

study material

,

ppt

,

video lectures

,

Solved Practice Questions on Internal Energy

,

Exam

,

Viva Questions

,

shortcuts and tricks

,

practice quizzes

,

Solved Practice Questions on Internal Energy

,

pdf

,

Semester Notes

,

Solved Practice Questions on Internal Energy

,

Objective type Questions

,

Work Done and Enthalpy | Physical Chemistry

,

Important questions

,

mock tests for examination

,

Work Done and Enthalpy | Physical Chemistry

;