A Number Pattern is a series of numbers that adhere to a specific order or rule in mathematics. These patterns often demonstrate the reciprocal relationship between numbers, and the sequences of numbers themselves can be referred to as patterns. To solve problems involving Number Patterns, it is essential to grasp the rule governing the sequence.
There are two common number sequence patterns:
The special sequences of Number Patterns are as follows:
Arithmetic sequences are sequences of numbers with constant differences between consecutive terms in mathematics. Common differences between consecutive terms are called common differences.
Here are some examples of arithmetic numbers:
1, 4, 7, 10, 13, 16, ...... is an arithmetic sequence because the difference between consecutive terms is 3.
1, 4, 8, 11, 15, 18, ...... is not an arithmetic sequence because the difference between consecutive terms is not a constant.
The geometric progression is a relation between two non-zero numbers in which, after the first term, each succeeding term is found by multiplying the previous term with a fixed, non-zero number.
Here are some examples:
4, 8, 16, 32, 64, ...... is a Geometric sequence because the step is multiplied by 2 which is the common ratio.
4, 8, 12, 16, 20, 24, ...... does not form a geometric sequence since the ratio between each step is different.
As a matter of mathematics, a square number is an integer that is the square of another integer. Sixteen is a square number that can be written as a square of the number four. Denoted by 42 or 4 * 4.
Here are the square Number Patterns for the first 10 numbers:
1, 4, 9, 16, 25, 36, 49, 64, 81, 100.
A square Number Pattern is shown here where the first number is a square of 1, followed by a square of 2 which equals 4, a square of 3 equals 9, and so on until the square of 10 equals 100.
A cube number is one that has been multiplied three times by itself. The cube root of 27 is 3, which makes it a cube number. Denoted by 33 or 3 * 3 * 3.
Natural numbers have the following Cubic Sequence:
1, 8, 27, 64, 125, 216, 343, 512,
Triangular numbers are used to count items arranged in equilateral triangles. When there are n points on a side of a triangular arrangement, the nth number of the formation equals the sum of the n natural numbers between 1 and n.
There are three triangles in the pattern of dots. The number sequence for the triangles is:
1, 3, 6, 10, 15, 21, 28, 36, …
There is a sequence of numbers called Fibonacci Numbers in which each number equals the sum of the two preceding ones, starting with zero and one.
Following is the Fibonacci sequence:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ……..
The sum of 1 + 0 here is 1, so the third number in the sequence is 1. The sum of the 4th and 6th numbers (i.e., 2 + 3) is the 6th number, 5 (also the sum of the 4th and 6th numbers).
10 videos|45 docs|3 tests
|
|
Explore Courses for Class 5 exam
|