Class 9 Exam  >  Class 9 Notes  >  Advance Learner Course: Mathematics (Maths) Class 9  >  RD Sharma Solutions: Polynomials (Exercise 2.1)

Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9 PDF Download

Question: 1
Find the zeros of each of the following quadratic polynomials and verify the relationship between the zeroes and their coefficients:
(i) f(x) = x2 – 2x – 8
(ii) g(s) = 4s2 – 4s + 1
(iii) 6x2 – 3 – 7x
(iv) h(t) = t2 – 15
(v) p(x) = x2 + 2√2 x – 6
(vi) q(x) = √3 x2 + 10x + 7√3
(vii) f(x) = x2 - (√3 + 1)x + √3
(viii) g(x) = a(x2 + 1) – x(a2 + 1)

Solution: 
(i) f(x) = x2 – 2x – 8
We have,
f(x) = x2 – 2x – 8
=  x2 – 4x + 2x – 8
=  x (x – 4) + 2(x – 4)
=  (x + 2)(x – 4)
Zeroes of the polynomials are – 2 and 4.
Now,
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
Hence, the relationship is verified.

(ii)  g(s) = 4s2 – 4s + 1
We have,
g(s) = 4s2 – 4s + 1
= 4s2 – 2s – 2s + 1

= 2s(2s – 1)− 1(2s – 1)
= (2s – 1)(2s – 1)
Zeroes of the polynomials are 1/2 and 1/2.
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
Hence, the relationship is verified.

(iii) 6s2 − 3 − 7x
= 6s2 − 7x − 3 = (3x + 11) (2x – 3)
Zeros of the polynomials are 3/2 and (-1)/3
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
Hence, the relationship is verified.

(iv) h(t) = t2 – 15
We have,

Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
Zeroes of the polynomials are - √15 and √15
Sum of the zeroes = 0 - √15 + √15 = 0
0 = 0
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
Hence, the relationship verified.

(v) p(x) = x2 + 2√2 x – 6
We have,
p(x) = x2 + 22 - 6
       = x2 + 3√2x + 3√2x - 6
       = x(x + 3√2) - √2(x + 3√2)
       = (x + 3√2)(x - √2)
Zeroes of the polynomials are 3√2 and –3√2 Sum of the zeroes

Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9

Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
-  6 = – 6
Hence, the relationship is verified.

(vi) q(x) = √3 x2 + 10x + 7√3

q(x) = √3x2 + 10x + 7√3

= 3x2 + 7x + 3x + 7√3

= 3x(x+√3)7(x+√3)

= (x + √3)(7 + √3x)
Zeros of the polynomials are -√3 and -7/√3
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
Product of the polynomials are - √3, 7/√3
7 = 7
Hence, the relationship is verified.
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
Zeros of the polynomials are 1 and √3
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
Hence, the relationship is verified

(viii) g(x) = a[(x2 + 1)–  x(a2 + 1)]2
= ax2 + a − a2x − x
= ax2 − [(a2x + 1)] + a
= ax2 − a2x – x + a
= ax(x − a) − 1(x – a) = (x – a)(ax – 1)
Zeros of the polynomials are 1/a and 1 Sum of the zeros
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9 
Product of zeros = a/a
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
Hence, the relationship is verified.


Question: 2
If α and β are the zeroes of the quadratic polynomial f(x) = x2 – 5x + 4, find the value of Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
Solution: 
We have,
α and β are the roots of the quadratic polynomial.
f(x) = x2 – 5x + 4
Sum of the roots = α + β = 5
Product of the roots = αβ = 4
So,

Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9


Question: 3
If α and β are the zeroes of the quadratic polynomial f(x) = x2 – 5x + 4, find the value of Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
Solution:

Since, α and β are the zeroes of the quadratic polynomial.
p(y) = x2 – 5x + 4
Sum of the zeroes = α + β = 5
Product of the roots = αβ = 4
So,
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9


Question: 4
If α and β are the zeroes of the quadratic polynomial p (y) = 5y2 – 7y + 1, find the value ofPolynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
Solution: 

Since, α and β are the zeroes of the quadratic polynomial.
p(y) = 5y2 – 7y + 1
Sum of the zeroes = α + β = 7
Product of the roots = αβ = 1
So,
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9


Question: 5
If α and β are the zeroes of the quadratic polynomial f(x) = x2 – x – 4, find the value of Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
Solution: 

Since, α and β are the zeroes of the quadratic polynomial.
We have,
f(x) = x2 – x – 4
Sum of zeroes = α + β = 1
Product of the zeroes = αβ = - 4
So,
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9


Question: 6
If α and β are the zeroes of the quadratic polynomial f(x) = x2 + x – 2, find the value of Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9

Solution:

Since, α and β are the zeroes of the quadratic polynomial.
We have,
f(x) = x2 + x – 2
Sum of zeroes = α + β = 1
Product of the zeroes = αβ = – 2
So,
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9


Question: 7
If one of the zero of the quadratic polynomial f(x) = 4x2 – 8kx – 9 is negative of the other, then find the value of k.
Solution:
 

Let, the two zeroes of the polynomial f(x) = 4x2 – 8kx – 9 be α and − α.
Product of the zeroes = α × − α = – 9
Sum of the zeroes = α + (− α) = – 8k = 0
Since, α – α = 0
⇒ 8k = 0 ⇒ k = 0


Question: 8
If the sum of the zeroes of the quadratic polynomial f(t) = kt2 + 2t + 3k is equal to their product, then find the value of k.
Solution: 

Let the two zeroes of the polynomial f(t) = kt2 + 2t + 3k be α and β.
Sum of the zeroes = α + β = 2
Product of the zeroes = α × β = 3k
Now,
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9


Question: 9
If α and β are the zeroes of the quadratic polynomial p(x) = 4x2 – 5x – 1, find the value of α2β + αβ2.

Solution: 

Since, α and β are the zeroes of the quadratic polynomial p(x) = 4x2 – 5x – 1
So, Sum of the zeroes α + β = 5/4
Product of the zeroes  α × β = – ¼
Now,
α2β + αβ2 = αβ (α + β)
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9


Question: 10
If α and β are the zeroes of the quadratic polynomial 
f(t) = t2 – 4t + 3, find the value of α4β3 + α3β4.
Solution: 

Since, α and β are the zeroes of the quadratic polynomial f(t) = t2 – 4t + 3
So, Sum of the zeroes = α + β = 4
Product of the zeroes = α × β = 3
Now,
α4β3 + α3β4 = α3β3(α + β)
= (3)3(4) = 108


Question: 11
If α and β are the zeroes of the quadratic polynomial 
f(x) = 6x2 + x – 2, find the value of
Solution:

Since, α and β are the zeroes of the quadratic polynomial f(x) = 6x2 + x – 2.
Sum of the zeroes = α + β = -⅙
Product of the zeroes =α × β = -⅓
Now,

Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
By substitution the values of the sum of zeroes and products of the zeroes, we will get
= - 25/12


Question: 12
If α and β are the zeroes of the quadratic polynomial f(x) = 6x2 + x – 2, find the value of Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
Solution: 

Since, α and β are the zeroes of the quadratic polynomial f(x) = 6x2 + x – 2.
Sum of the zeroes = α + β = 6/3
Product of the zeroes = α × β = 4/3
Now,
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
By substituting the values of sum and product of the zeroes, we will get
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9


Question: 13
If the squared difference of the zeroes of the quadratic polynomial 
f(x) = x2 + px + 45 is equal to 144, find the value of p.
Solution

Let the two zeroes of the polynomial be αand β.
We have,
f(x) = x2 + px + 45
Now,
Sum of the zeroes =  α + β = – p
Product of the zeroes =  α × β = 45
So,
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
Thus, in the given equation, p will be either 18 or -18.


Question: 14
If α and β are the zeroes of the quadratic polynomial
f(x) = x2 – px + q,  prove that Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9

Solution:

Since, α and β are the roots of the quadratic polynomial given in the question.
f(x) = x2 – px + q
Now,
Sum of the zeroes = p = α + β
Product of the zeroes = q = α × β
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
LHS = RHS
Hence, proved.


Question: 15
If α and β are the zeroes of the quadratic polynomial f(x) = x2 – p(x + 1) – c, show that (α + 1)(β + 1) = 1 – c.
Solution:

Since, α and β are the zeroes of the quadratic polynomial
f(x) = x2 – p(x + 1)– c
Now,
Sum of the zeroes = α + β = p
Product of the zeroes = α × β = (- p – c)
So,
(α + 1)(β + 1)
= αβ + α + β + 1
= αβ + (α + β) + 1
= (− p – c) + p + 1
= 1 – c = RHS
So, LHS = RHS
Hence, proved.


Question: 16
If α and β are the zeroes of the quadratic polynomial such that α + β = 24 and α – β = 8, find a quadratic polynomial having α and β as its zeroes.
Solution:

We have,
α + β = 24         …… E-1
α – β = 8              …. E-2
By solving the above two equations accordingly, we will get
2α = 32 α = 16
Substitute the value of α, in any of the equation. Let we substitute it in E-2, we will get
β = 16 – 8 β = 8
Now,
Sum of the zeroes of the new polynomial = α + β = 16 + 8 = 24
Product of the zeroes = αβ = 16 × 8 = 128
Then, the quadratic polynomial is-K 
x2– (sum of the zeroes)x + (product of the zeroes) =  x2 – 24x + 128
Hence, the required quadratic polynomial is f(x) = x2 + 24x + 128


Question: 17
If α and β are the zeroes of the quadratic polynomial 
f(x) = x2 – 1, find a quadratic polynomial whose zeroes are Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
Solution:

We have,
f(x) = x2 – 1
Sum of the zeroes = α + β = 0
Product of the zeroes = αβ = – 1
From the question,

Sum of the zeroes of the new polynomial
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
{By substituting the value of the sum and products of the zeroes}
As given in the question,
Product of the zeroes
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
Hence, the quadratic polynomial is
x2 – (sum of the zeroes)x + (product of the zeroes)
= kx2 – (−4)x + 4x2 –(−4)x + 4 
Hence, the required quadratic polynomial is f(x) = x2 + 4x + 4


Question: 18
If α and β are the zeroes of the quadratic polynomial f(x) = x2 – 3x – 2, find a quadratic polynomial whose zeroes are
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
Solution:
We have,
f(x) = x2 – 3x – 2
Sum of the zeroes =  α + β = 3
Product of the zeroes = αβ = – 2
From the question,
Sum of the zeroes of the new polynomial Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
So, the quadratic polynomial is,
x2- (sum of the zeroes)x + (product of the zeroes)
x2 - (sum of the zeroes)x + (product of the zeroes)
Hence, the required quadratic polynomial is k 
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
Hence, the required quadratic polynomial is k 
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9


Question: 19
If α and β are the zeroes of the quadratic polynomial f(x) = x2 + px + q, form a polynomial whose zeroes are (α + β)2 and (α – β)2.
Solution:
We have,
f(x) = x2 + px + q
Sum of the zeroes = α + β = -p
Product of the zeroes = αβ = q
From the question,
Sum of the zeroes of new polynomial = (α + β)2 + (α – β)2
= (α + β)2 + α2 + β2 – 2αβ
= (α + β)2 + (α + β)2 – 2αβ – 2αβ
= (- p)2 + (- p)2 – 2 × q – 2 × q
= p2 + p2 – 4q
= p2 – 4q
Product of the zeroes of new polynomial = (α + β)2 (α – β)2
= (- p)2((- p)2 - 4q)
= p2 (p2–4q)
So, the quadratic polynomial is,
x2 – (sum of the zeroes)x + (product of the zeroes)
= x2 – (2p2 – 4q)x + p2(p2 – 4q)
Hence, the required quadratic polynomial is f(x) = k(x2 – (2p2 –4q) x + p2(p2 - 4q)).


Question: 20
If α and β are the zeroes of the quadratic polynomial f(x) = x2 – 2x + 3, find a polynomial whose roots are:
(i)  α + 2,β + 2
(ii) Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
Solution:
We have,
f(x) = x2 – 2x + 3
Sum of the zeroes = α + β = 2
Product of the zeroes = αβ = 3
(i) Sum of the zeroes of new polynomial = (α + 2) + (β + 2)
= α + β + 4
= 2 + 4 = 6
Product of the zeroes of new polynomial = (α + 1)(β + 1)

= αβ + 2α + 2β + 4
= αβ + 2(α + β) + 4 = 3 + 2(2) + 4 = 11
So, quadratic polynomial is:
x2 – (sum of the zeroes)x + (product of the zeroes)
= x2 – 6x +11
Hence, the required quadratic polynomial is f(x) = k(x2 – 6x + 11)
f(x) = k(x2 – 6x + 11)
(ii) Sum of the zeroes of new polynomial Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
Product of the zeroes of new polynomialPolynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9

Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
So, the quadratic polynomial is,
x2 – (sum of the zeroes)x + (product of the zeroes)

Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
Thus, the required quadratic polynomial is f(x) = k(x2 – 23x + 13)
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9


Question: 21
If α and β are the zeroes of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate:
(i)  α – β
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
(iv) α2β + αβ2
(v) α4 + β4
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
Solution:

f(x) = ax2 + bx + c
Here,
Sum of the zeroes of polynomial = α + β = -b/a
Product of zeroes of polynomial = αβ = c/a
Since, α + β are the roots (or) zeroes of the given polynomial, so
(i) α – β
The two zeroes of the polynomials are -

Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9

From the previous question, we know that,
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
Also,
αβ = c/a
Putting the values in E.1, we will get
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
Since,
Sum of the zeroes of polynomial = α + β = – b/a
Product of zeroes of polynomial = αβ = c/a
After substituting it in E-1, we will get
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
(iv) α2β + αβ2
= αβ(α + β) …….. E- 1.
Since,
Sum of the zeroes of polynomial = α + β = – b/ a
Product of zeroes of polynomial = αβ = c/a
After substituting it in E-1, we will get
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
(v)  α4 + β4
= (α2 + β2)2 – 2α2β2
= ((α + β)2 – 2αβ)2 – (2αβ)2 ……. E- 1
Since,
Sum of the zeroes of polynomial = α + β = – b/a
Product of zeroes of polynomial = αβ = c/a
After substituting it in E-1, we will get
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
Since,
Sum of the zeroes of polynomial = α + β = – b/a
Product of zeroes of polynomial = αβ = c/a
After substituting it, we will get
Since,
Sum of the zeroes of polynomial = α + β = – b/a
Product of zeroes of polynomial = αβ = c/a
After substituting it, we will get
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9
Since,
Sum of the zeroes of polynomial= α + β = – b/a
Product of zeroes of polynomial= αβ = c/a
After substituting it, we will get
Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9

The document Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9 is a part of the Class 9 Course Advance Learner Course: Mathematics (Maths) Class 9.
All you need of Class 9 at this link: Class 9
13 videos|79 docs|29 tests

FAQs on Polynomials (Exercise 2.1) RD Sharma Solutions - Advance Learner Course: Mathematics (Maths) Class 9

1. What are polynomials?
Ans. Polynomials are algebraic expressions that consist of variables, coefficients, and exponents, combined using addition, subtraction, multiplication, and non-negative integer exponents. They are widely used in various branches of mathematics and have many applications in real-life problems.
2. How do you determine the degree of a polynomial?
Ans. The degree of a polynomial is determined by the highest power of the variable present in the polynomial. For example, if the polynomial is 3x^2 + 2x + 1, the degree is 2 because the highest power of x is 2. The degree helps in understanding the behavior and properties of the polynomial.
3. Can a polynomial have more than one variable?
Ans. Yes, a polynomial can have more than one variable. Polynomials with more than one variable are called multivariate polynomials. For example, 3x^2y + 2xy + 1 is a polynomial with two variables, x and y. The degree of a multivariate polynomial is determined by the sum of the exponents of all variables in any term with the highest degree.
4. What are the different types of polynomials based on the number of terms?
Ans. Polynomials can be classified based on the number of terms they have. Some common types of polynomials include: - Monomial: A polynomial with only one term, such as 5x^2. - Binomial: A polynomial with two terms, such as 3x + 2. - Trinomial: A polynomial with three terms, such as 4x^2 + 2x + 1. - Polynomial: A polynomial with more than three terms.
5. How can polynomials be used to solve real-life problems?
Ans. Polynomials can be used to model and solve various real-life problems. They are often used in physics, engineering, economics, and many other fields. For example, polynomials can be used to represent and analyze the growth of populations, the trajectory of projectiles, the behavior of electrical circuits, and the optimization of resources. By converting real-life problems into polynomial equations, we can apply mathematical techniques to find solutions and make predictions.
Related Searches

Extra Questions

,

Free

,

Important questions

,

shortcuts and tricks

,

Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9

,

video lectures

,

Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9

,

Exam

,

Polynomials (Exercise 2.1) RD Sharma Solutions | Advance Learner Course: Mathematics (Maths) Class 9

,

ppt

,

pdf

,

past year papers

,

Objective type Questions

,

Previous Year Questions with Solutions

,

study material

,

Viva Questions

,

practice quizzes

,

mock tests for examination

,

Sample Paper

,

Semester Notes

,

Summary

,

MCQs

;