Commerce Exam  >  Commerce Notes  >  Mathematics (Maths) Class 11  >  NCERT Exemplar: Complex Numbers & Quadratic Equations

NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce PDF Download

Q.1. For a positive integer n, find the value of NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Ans.
We haveNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce[∵ i2 = - 1]
=  [(1  i)(1 + i)]n
=    [1   i2]n = [1 + 1]n = 2n
Hence, (1  i)nNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce

Q.2. Evaluate NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce, where n ∈ N .
Ans. 
We have NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
= (i + i2) + (i2 + i3) + (i3 + i4) + (i4 + i5) + (i5 + i6) + (i6 + i7) + (i7 + i8) + (i8 + i9) + (i9 + i10) + (i10 + i11) + (i11 + i12) + (i12 + i13) + (i13 + i14)
= i + 2(i2 + i3 + i4 + i5 + i6 + i7 + i8 + i9 + i10 + i11 + i12 + i13) + i14
= i + 2[– 1 – i + 1 + i – 1 – i + 1 + i – 1 – i + 1 + i] + (– 1)
= i + 2(0) – 1 ⇒ 1 + i
Hence,NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce= – 1 + i.

Q.3. IfNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce=  x + iy, then find (x, y).
Ans.
We have NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce= x + iy
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
 (i)3  (- i)3 = x + iy  i2.i + i2.i = x + iy
⇒ - i  i = x + iy  0  2i = x + iy
Comparing the real and imaginary parts, we get
x = 0, y = - 2. Hence, (x , y) = (0 , - 2).

Q.4. If NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce= x + iy, then find the value of x + y.
Ans.
Given that: NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce [∵ i2 = - 1]
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Comparing the real and imaginary parts, we get
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Hence, NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce

Q.5. If NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce= a + ib, then find (a, b).
Ans. 
We have NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
⇒ ( - i)100 = a + bi  i100 = a + bi
⇒ (i4)25 = a + bi  (1)25 = a + bi  1 = a + bi
⇒ 1 + 0i = a + bi
Comparing the real and imaginary parts, we have
a = 1, b = 0
Hence (a, b) = (1, 0)

Q.6. If a = cos θ + i sinθ, find the value of NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Ans. 
Given that: a = cos θ + i sin θ
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - CommerceNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Hence,NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce

Q.7. If (1 + i) z = (1 – i) z , then show that z = – iNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Ans.
Given that: (1 + i)z = NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Hence proved.

Q.8. If z = x + iy , then show that NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commercewhere b ∈ R, represents a circle.
Ans.
Given that: z = x + iy
To prove: NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
⇒ (x + iy) (x – iy) + 2(x + iy + x – iy) + b = 0
⇒x2 + y2 – 2(x + x) + b = 0
⇒x2 + y2 – 4x + b = 0 Which represents a circle.
Hence proved.

Q.9. If the real part of NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce is 4, then show that the locus of the point representing z in the complex plane is a circle.
Ans.
Let   z = x + iy
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce 
So  NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Real part = 4
∴  NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
⇒ x2 + y2 + x – 2 = 4[(x – 1)+ y2]
⇒ x2 + y2 + x – 2 = 4[x2 + 1 – 2x + y2]
⇒ x2 + y2 + x – 2 = 4x2 + 4 – 8x + 4y2
⇒ x2 – 4x+ y2 – 4y2 + x + 8x – 2 – 4 = 0
⇒ – 3x2 – 3y2 + 9x – 6 = 0
⇒ x2 + y2 – 3x + 2 = 0
Which represents a circle. Hence, z lies on a circle.

Q.10. Show that the complex number z, satisfying the condition argNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce lies on a circle.
Ans.
Let z = x + iy
Given that:NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
⇒ arg (z – 1) – arg (z + 1) =NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
⇒ arg [x + iy – 1] – arg [x + iy + 1] =NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
⇒ arg [(x – 1) + iy] – arg [(x + 1) + iy] = NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
⇒ x2 + y2 – 1 = 2y
⇒ x2 + y2 – 2y – 1 = 0 which is a circle.
Hence, z lies on a circle.

Q.11. Solve the equation NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce = z + 1 + 2i.
Ans.
Given that: NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce = z + 1 + 2i
Let z = x + iy
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce= (z + 1) + 2i
Squaring both sides
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
⇒ 0 = – 3 + 2z + 4(z + 1)i
⇒ 3 – 2z – 4(z + 1)i = 0
⇒ 3 – 2(x + yi) – 4[x + yi + 1]i = 0
⇒ 3 – 2x – 2yi – 4xi – 4yi2 – 4i = 0
⇒ 3 – 2x + 4y – 2yi – 4i – 4xi = 0
⇒ (3 – 2x + 4y) – i(2y + 4x + 4) = 0
⇒ 3 – 2x + 4y = 0 ⇒ 2x - 4y = 3 ...(i)
and 4x + 2y + 4 = 0 ⇒ 2x + y = - 2 ...(ii)
Solving eqn. (i) and (ii), we get
y = – 1 and x =NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Hence, the value of z = x + yi =NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce

LONG ANSWER TYPE QUESTIONS
Q.12. If NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce = z + 2 (1 + i), then find z.
Ans.
Given that: NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce = z + 2(1 + i)
Let z = x + iy
So, NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce = (x + iy) + 2(1 + i)
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce= x + iy + 2 + 2i
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce= (x + 2) + (y + 2)i
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce= (x + 2) + (y + 2)i
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Squaring both sides, we get
(x + 1)2 + y2 = (x + 2)2 + (y + 2)2.i2 + 2(x + 2)(y + 2)i
⇒ x2 + 1 + 2x + y2 = x2 + 4 + 4x – y2 – 4y – 4 + 2(x + 2)(y + 2)i
Comparing the real and imaginary parts, we get
x2 + 1 + 2x + y2 = x2 + 4x – y2 – 4y and 2(x + 2)(y + 2) = 0
⇒ 2y2 – 2x + 4y + 1 = 0 ...(i)
and (x + 2)(y  + 2) = 0 ...(ii)
x + 2 = 0 or y + 2 = 0
∴ x = – 2 or y = – 2
Now put x = – 2 in eqn. (i)
2y2  2 × (- 2) + 4y + 1 = 0
⇒ 2y2 + 4 + 4y + 1 = 0
⇒ 2y2 + 4y + 5 = 0
b2  4ac = (4)2  4 × 2 × 5
= 16  40 = - 24 < 0 no real roots.
Put y = – 2 in eqn. (i)
2(– 2)2 – 2x + 4(– 2) + 1 = 0
8 - 2x - 8 + 1 = 0 ⇒ x = 1/2 and y = -2
Hence, z = x + iy = (1/2 - 2i)

Q.13. If arg (z – 1) = arg (z + 3i), then find x – 1 : y. where z = x + iy
Ans.
Given that: arg (z – 1) = arg (z + 3i)
⇒ arg [x + yi – 1] = arg [x + yi + 3i]
⇒ arg [(x – 1) + yi] = arg [x + (y + 3)i]
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
⇒ xy = (x – 1)(y + 3) ⇒ xy = xy + 3x – y – 3
⇒ 3x – y = 3 ⇒ 3x - 3 = y
⇒ 3(x – 1) = y ⇒ NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce⇒ x – 1 : y = 1 : 3
Hence, x – 1 : y = 1 : 3.

Q.14. Show thatNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commercerepresents a circle. Find its centre and radius.
Ans.
Given that: NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Let z = x + iy
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Squaring both sides, we get
(x – 2)2 + y= 4[(x – 3)2 + y2]
⇒ x2 + 4 – 4x + y2 = 4[x2 + 9 – 6x + y2]
⇒ x2 + y2 – 4x + 4 = 4x2 + 4y2 – 24x + 36
⇒ 3x2 + 3y2 – 20x + 32 = 0
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Here g = NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Hence, the required equation of the circle is
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce

Q.15. IfNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerceis a purely imaginary number (z ≠ – 1), then find the value of NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce.
Ans.
Given that NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerceis purely imaginary number
Let z = x + yi
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Since, the number is purely imaginary, then real part = 0
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
⇒ x2 + y2 – 1 = 0 ⇒ x2 + y2 = 1
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce

Q.16. z1 and z2 are two complex numbers such that NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce and arg (z1) + arg (z2) = π, then show that z1 =NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce .
Ans.
Let z1 = r1 (cos θ1 + i sin θ1) and z2 = r2 (cos θ2 + i sin θ2) are polar form of two complex number z1 and z2.
Given that: |z1| =|z2|  r1 = r2 ….(i)
and arg (z1) + arg (z2) = π
⇒ θ1 + θ2 = π
⇒ θ1 = π  θ2
Now z1 = r1 [cos   θ2) + i sin      θ2)]
⇒ z1 = r1  [- cos θ2 + i sin θ2]
 z1 = - r1 (cos θ2  i sin θ2) ….(i)
z2 = r2 [cos θ2 + i sin θ2]
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce [∴ r1 = r2]…(ii)
From eqn. (i) and (ii) we get,
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Hence proved.

Q.17. If NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce then show that the real part of z2 is zero.
Ans.
 Let z1 = x + yi
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
⇒ x2 + y2 = 1 ...(i)
Now NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce

NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Hence, the real part of z2 is 0.

Q.18. If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, then find NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Ans.
 Let the polar form of z1 = r1 (cos θ1 + i sin θ1)
    NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce= r1 (cos θ1 – i sin θ1) = r1 [cos (– θ1) + i sin (– θ1)]
Similarly, z3 = r2 (cos θ2 + i sin θ2)
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce= r2 (cos θ2 – i sin θ2) = r2 [cos (– θ2) + i sin (– θ2)]
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce= arg (z1) – arg (z4) + arg (z2) – arg (z3)
= θ1  (- θ2) + (- θ1)  θ2
= θ1 + θ2  θ1  θ2 = 0
Hence, NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce

Q.19. IfNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce then
show that NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Ans.
We haveNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce...(i)
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
L.H.S. = R.H.S. Hence proved.

Q.20. If for complex numbers z1 and z2, arg (z1) – arg (z2) = 0, then show that
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Ans.
Given that for z1 and z2, arg (z1) – arg (z2) = 0
Let us represent z1 and z2 in polar form
z1 = r1 (cos θ1 + i sin θ1) and z2 = r2 (cos θ2 + i sin θ2)
arg (z1) = θ1 and arg (z2) = θ2
Since arg (z1) – arg (z2) = 0
⇒ θ1  θ2 = 0  θ1 = θ2
Now z1 – z2 = r1 (cos θ1 + i sin θ1) – r2 (cos θ2 + i sin θ2)
= r1 cos θ1 + i r1 sin θ1 – r2 cos θ1 – i r2 sin θ1
[∴ θ1 = θ2]
= (rcos θ1 – r2 cos θ1) + i(r1 sin θ1 – r2 sin θ1)
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Hence, NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce

Q.21. Solve the system of equations Re (z2) = 0,NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Ans.
Given that: Re(z2) = 0 andNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Let z = x + yi
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce= 2 ⇒ x2 + y2 = 4 ...(i)
Since, z = x + yi
z2 = x2 + y2i2 + 2xyi
⇒ z2 = x2 – y2 + 2xyi
∴ Re(z2) = x2 – y2
⇒ x2 – y2 = 0 ...(ii)
From eqn. (i) and (ii), we get x
x2 + y2 = 4  2x2 = 4  x2 = 2  x =NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Hence, z = NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce

Q.22. Find the complex number satisfying the equationNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Ans.
Given that: NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Let z = x + yi
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
⇒ x2 = 2(x2 + 2x + 1 + y2)
⇒ x2 = 2x2 + 4x + 2 + 2y2
⇒ x2 + 4x + 2 + 2y2 = 0
⇒ x2 + 4x + 2 + 2(– 1)2 = 0    [∴ y = – 1]
⇒ x2 + 4x + 4 = 0
⇒ (x + 2)2 = 0
⇒ x + 2 = 0 ⇒ x = – 2
Hence, z = x + yi = – 2 – i.
Q.23. Write the complex number NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commercein polar form.
Ans.
Given that:
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
So r = √2
Now arg(z) =NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Hence, the polar is
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce

Q.24. If z and w are two complex numbers such thatNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce=1 and arg (z) – arg (w) =NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commercethen show thatNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Ans.
Let z = r1 (cos θ1 + i sin θ1) and w = r2 (cos θ2 + i sin θ2)
zw = r1r2 [(cos θ1 + i sin θ1)] [(cos θ2 + i sin θ2)]
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce= r1r2 = 1 (given)
Now arg (z) – arg (w) = NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce= r1 (cos θ1 – i sin θ1) r2 (cos θ2 + i sin θ2)
= r1 r2 [cos θ1 cos θ2 + i cos θ1 sin θ2 – i sin θ1 cos θ2 – i2 sin θsin θ2]
= r1 r2 [(cos θ1 cos θ2 + sin θ1 sin θ2) + i(cos θ1 sin θ2 – sin θ1 cos θ2)]
= r1 r2 [cos (θ2 – θ1) + i sin (θ2 – θ1)]
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
HereNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - CommerceHence proved.

Fill in the Blanks
Q.25. (i) For any two complex numbers z1, z2 and any real numbers a, b,NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
(ii) The value ofNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
(iii) The numberNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerceis equal to ...............
(iv) The sum of the series i + i2 + i3 + ... upto 1000 terms is ..........
(v) Multiplicative inverse of 1 + i is ................
(vi) If z1 and z2 are complex numbers such that z1 + z2 is a real number, then z= ....
(vii) arg (z) + arg NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
(viii) IfNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commercethen the greatest and least values ofNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerceare ............... and ...............
(ix) IfNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commercethen the locus of z is ............
(x) IfNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce= 4 and arg (z) =NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce, then z = ............
Ans.
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Hence, the value of the filler isNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - CommerceNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Hence, the value of the filler is – 15.
(iii) NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
(iv) i + i2 + i3 + ... upto 1000 terms
= i + i2 + i3 + ... + i1000 = 0
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Hence, the value of the filler is 0.
(v) Multiplicative inverse of
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Hence, the value of the filler = NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
(vi) Let z= x1 + iy1 and z2
= x2 + iy2 z+ z2
= (x1 + iy1) + (x2 + iy2) z1 + z2
= (x1 + x2) + (y1 + y2)i
If z1 + z2 is real then
y1 + y2 = 0⇒ y1 = – y2 
∴ z2 = x2 – iy1
z2 = x1 – iy1 (when x1 = x2)
So z2 = NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Hence, the value of the filler isNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce.
(vii) arg ( z) + arg NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
If arg (z) = θ, then arg ( NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce ) = - θ
So θ + (– θ) = 0
Hence, the value of the filler is 0.
(viii) Given that:NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
For the greatest value of
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Hence, the greatest value ofNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerceis 6 and for the least value ofNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce= 0.
[∴ The least value of the modulus of complex number is 0] Hence, the value of the filler are 6 and 0.
(ix) Given that:NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Let z = x + iy
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Which represents are equation of a circle.
Hence, the value of the filler is circle.
(x) Given that:NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Let z = x + yi
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
From eqn. (i) and (ii)
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Hence, the value of the filler isNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce

Q.26. State True or False for the following :
(i) The order relation is defined on the set of complex numbers.
(ii) Multiplication of a non zero complex number by – i rotates the point about origin through a right angle in the anti-clockwise direction.
(iii) For any complex number z the minimum value ofNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
(iv) The locus represented by NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce is a line perpendicular to the join of (1, 0) and (0, 1).
(v) If z is a complex number such that z ≠ 0 and Re (z) = 0, then Im (z2) = 0.
(vi) The inequality NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce represents the region given by x > 3.
(vii) Let z1 and z2 be two complex numbers such that NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce , then arg (z1 – z2) = 0.
(viii) 2 is not a complex number.
Ans.
(i) Comparison of two purely imaginary complex numbers is not possible. However, the two purely real complex numbers can be compared.
So it is ‘False’.
(ii) Let z = x + yi
z.i = (x + yi) i = xi – y which rotates at angle of 180°
So, it is ‘False’.
(iii) Let z = x + yi
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
The value of NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce is minimum when x = 0, y = 0 i.e., 1.
Hence, it is ‘True’.
(iv) Let z = x + yi
Given that:NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
⇒(x – 1)2 + y2 = x2 + (1 – y)2
⇒ x2 – 2x + 1 + y2 = x2 + 1 + y2 – 2y
⇒ – 2x + 2y = 0
⇒ x – y = 0 which is a straight line.
Slope = 1
Now equation of a line through the point (1, 0) and (0, 1)
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
⇒ y = – x + 1 whose slope = – 1.
Now the multiplication of the slopes of two lines = – 1 x 1 = - 1,
so they are perpendicular.
Hence, it is ‘True’.
(v) Let z = x + yi, z ≠ 0 and Re(z) = 0
Since real part is 0 ⇒ x = 0
∴ z = 0 + yi = yi
∴ lm (z2) = y2i2 = - y2 which is real.
Hence, it is ‘False’.
(vi) Given that:NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Let z = x + yi
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
⇒ (x – 4)2 + y2 < (x – 2)2 + y2
⇒ (x – 4)2 < (x – 2)2
⇒ x2 + 16 – 8x < x2 + 4 – 4x 
⇒ – 8x + 4x < – 16 + 4
⇒ – 4x < – 12 ⇒ x > 3
Hence, it is ‘True’.
(vii) Let z1 = x1 + y1i and z2 = x2 + y2i
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Squaring both sides, we get
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Again squares on both sides, we get
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
∴ arg (z1) = arg (z2)
⇒ arg (z1) – arg (z2) = 0
Hence, it is ‘True’.
(viii) Since 2 has no imaginary part.
So, 2 is not a complex number.
Hence, it is ‘True’.

Q.27. Match the statements of Column A and Column B.
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Ans.
(a) Given that z = i + √3
Polar form of z = r [cos θ + i sin θ]
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Since x > 0, y > 0
∴ Polar form of z =NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Hence, (a) ⇒ 8y = 0 Þ y = 0. Which is the equation of x-axis and it is perpendicular to the line segment joining (0, – 2) and (0, 2).
Hence, (d) ↔ (iv).
(b) Given that NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Here argument (z) = NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
So, NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Since x < 0 and y > 0
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Hence, (b)  (iii).
(c) Given that: NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Let z = x + yi
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
⇒ 8y = 0 ⇒ y = 0. Which is the equation of x-axis and it is perpendicular to the line segment joining (0, – 2) and (0, 2).
Hence, (d) ↔ (iv).
(e) Given that:NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Let z = x + yi
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Which represents a circle on or outside having centre (0, – 4) and radius 3.
Hence, (e) ↔ (ii).
(f) NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Let z = x + yi
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Which is a circle having centre (– 4, 0) and r=NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce and is on or inside the circle.
Hence, (f) ↔ (vi).
(g) LetNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commercewhich lies in third quadrant.
Hence, (g) ↔ (viii).
(h) Given that: z = 1 – i
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Which lies in first quadrant.
Hence, (h)↔ (vii).
Hence, the correct matches are (a)  (v), (b)  (iii), (c)  (i), (d)  (iv), (e)  (ii), (f) ↔ (vi), (g)  (viii), (h)  (vii).

Q.28. What is the conjugate ofNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Ans.
Given that NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce

Q.29. If NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce is it necessary that z1 = z2?
Ans.
Let z1 = x1 + y1i and z2 = x2 + y2i
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
⇒ x1 = ± x2 and y1 = ± y2
So z1 = x1 + y1i and z2 = ± x2 ± y2i
⇒ z1 ≠ z2
Hence, it is not necessary that z1 = z2.

Q.30. If NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce= x + iy, what is the value of x2 + y2?
Ans.
Given that: NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce= x + iy ...(i)
Taking conjugate on both sides
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce= x – iy ...(ii)
Multiplying eqn. (i) and (ii) we have
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Hence, the value of x2 + y2 = NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce

Q.31. Find z ifNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce= 4 and arg (z) =NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Ans.
Given that:NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce= 4 ⇒ r = 4
So Polar form of z = r [ cos θ + i sin θ]
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
= - 2 √3 + 2i
Hence, z = - 2 √3 + 2i .

Q.32. FindNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Ans.
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
= 1
Hence,NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce

Q.33. Find principal argument of (1 + i √3 )2 .
Ans.
Given that: (1 + i √3 )2 = 1 + i2 . 3 + 2 √3i
= 1 - 3 + 2 √3i = - 2 + 2 √3i
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Now Re(z) < 0 and image (z) > 0.
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Hence, the principal arg =NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce

Q.34. Where does z lie, ifNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Ans.
Given that:NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Let z = x + yi
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
⇒ x2 + (y – 5)2 = x2 + (y + 5)2
⇒(y – 5)2 = (y + 5)2
⇒ y2 + 25 – 10y = y2 + 25 + 10y
⇒ 20y = 0⇒ y = 0
Hence, z lies on x-axis i.e., real axis.

Choose the correct answer from the given four options
Q.35. sinx + i cos 2x and cos x – i sin 2x are conjugate to each other for:
(A) x = nπ
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
(C) x = 0
(D) No value of x
Ans.
Let z = sin x + i cos 2x
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce = sin x – i cos 2x
But we are given that NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce = cos x – i sin 2x
∴ sin x – i cos 2x = cos x – i sin 2x
Comparing the real and imaginary parts, we get
sin x = cos x and cos 2x = sin 2x
⇒ tan x = 1 and tan 2x = 1
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
⇒ x = 2x ⇒ 2x - x = 0 ⇒ x = 0
Hence, the correct option is (c).

Q.36. The real value of α for which the expression NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerceis purely real is :
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
(C) n π
(D) None of these, where n ∈N
Ans.
Let NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Since, z is purely real, then
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
So, α = nπ, n ∈ N.

Q.37. If z = x + iy lies in the third quadrant, thenNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce also lies in the third quadrant if
(A) x > y > 0
(B) x < y < 0
(C) y < x < 0
(D) y > x > 0
Ans.
Given that: z = x + iy
If z lies in third quadrant.
So x < 0 and y < 0.
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
When z lies in third quadrant thenNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commercewill also be lie in third  quadrant  

NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
⇒ 2 – y2 < 0 and 2xy > 0
⇒ x2 < y2 and xy > 0
So x < y < 0.
Hence, the correct option is (b)

Q.38. The value of (z + 3)NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerceis equivalent to
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
(C) z2 + 3
(D) None of these
Ans.
Given that: ( z + 3)NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Let z = x + yi
So ( z + 3)NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce= (x + yi + 3)(x – yi + 3)
= [(x + 3) + yi][(x + 3) – yi]
= (x + 3)2 – y2i2 = (x + 3)2 + y2
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Hence, the correct option is (a).

Q.39. IfNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commercethen

(A) x = 2n+1
(B) x = 4n
(C) x = 2n
(D) x = 4n + 1,  where n ∈N
Ans.
Given that: NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
⇒ (i)x = (i)4n
⇒x = 4n, n ∈ N
Hence, the correct option is (b).

Q.40. A real value of x satisfies the equation NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce= α − iβ(α, β ∈ R) if α2 + β2 =
(A) 1
(B) – 1
(C) 2
(D) – 2
Ans. 
Given that:NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce...(i)
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce...(ii)
Multiplying eqn. (i) and (ii) we get
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
So, α2 + β2 = 1
Hence, the correct option is (a).

Q.41. Which of the following is correct for any two complex numbers zand z2?
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
(B) arg (z1z2) = arg (z1). arg (z2)
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Ans.
Let z1 = r1 (cos θ1 + i sin θ1)
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce= r1
and z2 = r2 (cos θ2 + i sin θ2)
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce= r2
z1z2 = r1 (cos θ1 + i sin θ1) . r2 (cos θ2 + i sin θ2)
= r1r2 (cos θ1 + i sin θ1) . (cos θ2 + i sin θ2)
= r1r2 (cos θ1 cos θ2 + i sin θ2 cos θ1 + i sin θ1 cos θ2 + i2 sin θ1 sin θ2)
= r1r2 [(cos θ1 cos θ2 – sin θ1 sin θ2) + i(sin θ1 cos θ2 + cos θ1 sin θ2)]
= r1r2 [cos (θ1 + θ2) + i sin (θ1 + θ2)]
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Hence, the correct option is (a).

Q.42. The point represented by the complex number 2 – i is rotated about origin through an angle NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commercein the clockwise direction, the new position of point is:
(A) 1 + 2i
(B) –1 – 2i
(C) 2 + i
(D) –1 + 2 i
Ans.
Given that: z = 2 – i
If z rotated through an angle ofNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerceabout the origin in clockwise  direction.
Then the new position = z.e– (π/2)
= (2 – i) e– (π/2)
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
= (2 – i) (0 – i) = – 1 – 2i
Hence, the correct option is (b).

Q.43. Let x, y ∈ R, then x + iy is a non real complex number if:
(A) x = 0
(B) y = 0
(C) x ≠ 0
(D) y ≠ 0
Ans.
x + yi is a non-real complex number if y ≠ 0. If x, y ∈ R.
Hence, the correct option is (d).

Q.44. If a + ib = c + id, then
(A) a2 + c2 = 0
(B) b2 + c2 = 0
(C) b2 + d2 = 0
(D) a2 + b2 = c2 + d2
Ans.
Given that: a + ib = c + id
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Squaring both sides, we get a2 + b2 = c2 + d2
Hence, the correct option is (d).

Q.45. The complex number z which satisfies the conditionNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commercelies on
(A) circle x2 + y2 = 1
(B) the x-axis
(C) the y-axis
(D) the line x + y = 1.
Ans.
Given that: NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Let z = x + yi
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
⇒ x2 + (y + 1)2 = x2 + (y – 1)2
⇒ (y + 1)2 = (y – 1)2 
⇒ y2 + 2y + 1 = y2 – 2y + 1
⇒ 2y = – 2y
⇒ 4y = 0 ⇒ y = 0 ⇒ x-axis.
Hence, the correct option is (b).

Q.46. If z is a complex number, then
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Ans.
Let z = x + yi
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce= x2 + y2 ...(i)
Now z2 = x2 + y2i2 + 2xyi
z2 = x2 – y2 + 2xyi
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Hence, the correct option is (b).

Q.47. NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerceis possible if
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
(C) arg (z1) = arg (z2)
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Ans.
Let z1 = r1 (cos θ1 + i sin θ1) and z2 = r2 (cos θ2 + i sin θ2)
SinceNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
z1 + z2 = r1 cos θ1 + i r1 sin θ1 + r2 cos θ2 + i r2 sin θ2
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Squaring both sides, we get
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
⇒ 2r1r2 – 2r1r2 cos (θ1 – θ2) = 0
⇒ 1 – cos (θ1 – θ2) = 0 ⇒ cos (θ1 – θ2) = 1
θ1θ2 = 0 ⇒ θ1 = θ2
So, arg (z1) = arg (z2)
Hence, the correct option is (c).

Q.48. The real value of θ for which the expression NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerceis a real number is:
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
(D) none of these.
Ans.
LetNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
If z is a real number, then
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
⇒ 3 cos θ = 0 ⇒ cos θ = 0
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Hence, the correct option is (c).

Q.49. The value of arg (x) when x < 0 is:
(A) 0
(B) π/2
(C) π
(D) none of these
Ans.
Let z = – x + 0i and x < 0
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Since, the point (–x, 0) lies on the negative side of the real axis
(∴ x < 0).
∴ Principal argument (z) = π
Hence, the correct option is (c).

Q.50. If f (z) =NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commercewhere z = 1 + 2i, thenNCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
(D) none of these.
Ans.
Given that: z = 1 + 2i
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Now NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce

So  NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce
Hence, the correct option is (a).

The document NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce is a part of the Commerce Course Mathematics (Maths) Class 11.
All you need of Commerce at this link: Commerce
75 videos|238 docs|91 tests

Top Courses for Commerce

FAQs on NCERT Exemplar: Complex Numbers & Quadratic Equations - Mathematics (Maths) Class 11 - Commerce

1. What are complex numbers and how are they represented?
Ans. Complex numbers are numbers that consist of a real part and an imaginary part. They are represented in the form a + bi, where a is the real part and bi is the imaginary part with i being the imaginary unit.
2. How do you perform operations with complex numbers?
Ans. To perform operations with complex numbers, we can add, subtract, multiply, and divide them. Addition and subtraction is done by adding or subtracting the real and imaginary parts separately. Multiplication is done by using the distributive property and combining like terms. Division is done by multiplying both the numerator and denominator by the conjugate of the denominator.
3. What is the geometric interpretation of complex numbers?
Ans. Complex numbers can be represented as points on a complex plane, where the real part is represented on the x-axis and the imaginary part is represented on the y-axis. The magnitude of a complex number represents its distance from the origin, while the argument represents the angle it makes with the positive x-axis.
4. How are quadratic equations solved using complex numbers?
Ans. Quadratic equations with complex solutions can be solved using the quadratic formula. The discriminant of the quadratic equation is calculated, and if it is negative, the equation has complex solutions. The complex solutions can be found by using the formula x = (-b ± √(b^2 - 4ac))/(2a), where a, b, and c are the coefficients of the quadratic equation.
5. How are complex numbers used in real-life applications?
Ans. Complex numbers have numerous applications in fields such as engineering, physics, and computer science. They are used in electrical engineering for analyzing AC circuits, in signal processing for analyzing and manipulating signals, in quantum mechanics for describing wave functions, and in computer graphics for representing and manipulating 3D objects.
75 videos|238 docs|91 tests
Download as PDF
Explore Courses for Commerce exam

Top Courses for Commerce

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Summary

,

Extra Questions

,

pdf

,

Objective type Questions

,

NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce

,

study material

,

NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce

,

Semester Notes

,

Free

,

Exam

,

Sample Paper

,

NCERT Exemplar: Complex Numbers & Quadratic Equations | Mathematics (Maths) Class 11 - Commerce

,

ppt

,

Viva Questions

,

past year papers

,

shortcuts and tricks

,

MCQs

,

mock tests for examination

,

Previous Year Questions with Solutions

,

practice quizzes

,

video lectures

,

Important questions

;