Class 8 Exam  >  Class 8 Notes  >  RD Sharma Solutions for Class 8 Mathematics  >  RD Sharma Solutions - Chapter 21 - Mensuration - II (Part - 3), Class 8, Maths

Chapter 21 - Mensuration - II (Part - 3), Class 8, Maths RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics PDF Download

PAGE NO 21.22:

Question 1:

Find the surface area of a cuboid whose
 (i) length = 10 cm, breadth = 12 cm, height = 14 cm
 (ii) length = 6 dm, breadth = 8 dm, height = 10 dm
 (iii) length = 2 m, breadth = 4 m, height = 5 m
 (iv) length = 3.2 m, breadth = 30 dm, height = 250 cm.

ANSWER:

(i)Dimension of the cuboid:Length = 10 cm 

Breadth = 12 cm

Height = 14 cm 

Surface area of the cuboid = 2 × (length × breadth + breadth × height + length × height)

= 2 × (10 × 12 + 12 × 14 + 10 × 14) = 2 × (120 + 168 + 140) = 856 cm²

(ii)Dimensions of the cuboid:Length = 6 dm 

Breadth = 8 dm 

Height = 10 dm 

Surface area of the cuboid = 2 × (length × breadth + breadth × height + length × height)

= 2 × (6 × 8 + 8 × 10 + 6 × 10)

= 2 × (48 + 80 + 60) = 376 dm²

(iii) Dimensions of the cuboid:

Length = 2 m Breadth = 4 m 

Height = 5 m 

Surface area of the cuboid = 2 × (length × breadth + breadth × height + length × height)

= 2 × (2 × 4 + 4 × 5 + 2 × 5) = 2 × (8 + 20 + 10) = 76 m²

(iv)Dimensions of the cuboid:

Length = 3.2m             

= 3.2 × 10 dm  (1 m = 10 dm)             

= 32 dm

Breadth = 30 dm

Height = 250 cm                  

= 250 × 1/10dm   (10cm  =  1 dm)                   

= 25 dm

Surface area of the cuboid = 2 × (length × breadth + breadth × height + length × height)

= 2 × (32 × 30 + 30 × 25 + 32 × 25)

= 2 × (960 + 750 + 800) = 5020 dm² 


Question 2:

Find the surface area of a cube whose edge is
 (i) 1.2 m
 (ii) 27 cm
 (iii) 3 cm
 (iv) 6 m
 (v) 2.1 m

ANSWER:

(i) Edge of the a cube = 1.2 m

 ∴ Surface area of the cube = 6 × (side)2 = 6 × (1.2)2 = 6 × 1.44 = 8.64 m².

(ii) Edge of the a cube = 27 cm 

∴ Surface area of the cube = 6 × (side)2 = 6 × (27)2 = 6 × 729 = 4374 cm²

(iii) Edge of the a cube = 3 cm 

∴ Surface area of the cube = 6 × (side)2 = 6 × (3)= 6 × 9 = 54 cm²

(iv) Edge of the a cube = 6 m 

∴ Surface area of the cube = 6 × (side)= 6 × (6)= 6 × 36 = 216 m²

(v) Edge of the a cube = 2.1 m 

∴ Surface area of the cube = 6 × (side)2 = 6 × (2.1)2 = 6 × 4.41 = 26.46 m² 


Question 3:

A cuboidal box is 5 cm by 5 cm by 4 cm. Find its surface area.

ANSWER:

The dimensions of the cuboidal box are 5 cm × 5 cm × 4 cm. 

Surface area of the cuboidal box = 2 × (length × breadth + breadth × height + length × height)

= 2 × (5 × 5 + 5 × 4 + 5 × 4)

= 2 × (25 + 20 + 20) = 130 cm² 


Question 4:

Find the surface area of a cube whose volume is
 (i) 343 m3
 (ii) 216 dm3

ANSWER:

(i)Volume of the given cube = 343 m

We know that volume of a cube = (side)3

⇒ (side)3 = 343  i.e., side  = Chapter 21 - Mensuration - II (Part - 3), Class 8, Maths RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics = 7 m

∴ Surface area of the cube = 6 × (side)2 = 6 × (7)2 = 294 m²

(ii)Volume of the given cube = 216 dm3 

We know that volume of a cube = (side)3

⇒ (side)3 = 216 i.e., side = Chapter 21 - Mensuration - II (Part - 3), Class 8, Maths RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics = 6 dm

∴ Surface area of the cube = 6 × (side)2 = 6 × (6)2 = 216 dm²

  


Question 5:

Find the volume of a cube whose surface area is
 (i) 96 cm²
 (ii) 150 m²

ANSWER:

(i)Surface area of the given cube = 96 cm²

Surface area of a cube = 6 × (side)2

⇒ 6 × (side)2 = 96

⇒ (side)2 = 96/6 = 16 i.e., side of the cube = Chapter 21 - Mensuration - II (Part - 3), Class 8, Maths RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics = 4 cm

∴ Volume of the cube = (side)3 = (4)3 = 64 cm3

(ii)Surface area of the given cube = 150 m²

Surface area of a cube = 6 × (side)2

⇒ 6 × (side)2 = 150

⇒ (side)= 150/6 = 25

 i.e., side of the cube = Chapter 21 - Mensuration - II (Part - 3), Class 8, Maths RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics= 5 m

∴ Volume of the cube = (side)3 = (5)3 = 125 m3 


Question 6:

The dimensions of a cuboid are in the ratio 5 : 3 : 1 and its total surface area is 414 m². Find the dimensions.

ANSWER:

It is given that the sides of the cuboid are in the ratio 5:3:1. 

Suppose that its sides are x multiple of each other, then we have:Length = 5x m 

Breadth = 3x m 

Height = x m 

Also, total surface area of the cuboid = 414 m²

Surface area of the cuboid = 2 × (length × breadth + breadth × height + length × height)

⇒ 414 = 2 × (5x × 3x + 3x × 1x + 5x × x)

⇒ 414 = 2 × (15x+ 3x2 + 5x2

⇒ 414 = 2 × (23x2

⇒ 2 × (23 × x2) = 414 

⇒ (23 × x2) = 414/2 = 207

⇒ x2 = 207/23 = 9

⇒ x = √9 = 3

Therefore, we have the following:

Lenght of the cuboid = 5 × x = 5 × 3 = 15 m 

Breadth of the cuboid = 3 × x = 3 × 3 = 9 m 

Height of the cuboid = x = 1 × 3 = 3 m 


Question 7:

Find the area of the cardboard required to make a closed box of length 25 cm, 0.5 m and height 15 cm.

ANSWER:

Length of the box = 25 cm 

Width of the box = 0.5 m                   

= 0.5 × 100 cm  (∵ 1 m =  100 cm)                   

= 50 cm 

Height of the box = 15 cm

∴ Surface area of the box = 2 × (length × breadth + breadth × height + length × height)

= 2 × (25 × 50 + 50 × 15 + 25 × 15)

= 2 × (1250 + 750 + 375)

= 4750 cm² 


Question 8:

Find the surface area of a wooden box whose shape is of a cube, and if the edge of the box is 12 cm.

ANSWER:

It is given that the side of the cubical wooden box is 12 cm.

 ∴ Surface area of the cubical box = 6 × (side)2 = 6 × (12)2

= 864 cm²

It is given that the side of the cubical wooden box is 12 cm. 

∴ Surface area of the cubical box = 6 × (side)2 = 6 × (12)2

= 864 cm²


Question 9:

The dimensions of an oil tin are 26 cm × 26 cm × 45 cm. Find the area of the tin sheet required for making 20 such tins. If 1 square metre of the tin sheet costs Rs 10, find the cost of tin sheet used for these 20 tins.

ANSWER:

Dimensions of the oil tin are 26 cm × 26 cm × 45 cm.

So, the area of tin sheet required to make one tin = 2 × (length × breadth + breadth × height + length × height)

= 2 × (26 × 26 + 26 × 45 + 26 × 45)

= 2 × (676 + 1170 + 1170)

= 6032 cm²

Now, area of the tin sheet required to make 20  such tins = 20 × surface area of one tin = 20 × 6032 = 120640 cm²

It can be observed that 120640 cm² = 120640 × 1cm × 1cm                                         

= 120640 × 1/100m × 1/100m   (∵ 100 cm = 1 m)                                          

= 12.0640 m²

Also, it is given that the cost of 1 m² of tin sheet = Rs 10 

∴ The cost of 12.0640 m² of tin sheet = 12.0640 × 10 = Rs 120.6 


Question 10:

A cloassroom is 11 m long, 8 m wide and 5 m high. Find the sum of the areas of its floor and the four walls (including doors, windows, etc.)

ANSWER:

Lenght of the classroom = 11 m 

Width = 8 m 

Height = 5 m 

We have to find the sum of the areas of its floor and the four walls (i.e., like an open box).

∴ The sum of areas of the floor and the four walls = (length × width) + 2 × (width × height + length × height)

= (11 × 8) + 2 × (8 × 5 + 11 × 5)

= 88 + 2 × (40 + 55)

= 88 + 190 = 278 m² 


Question 11:

A swimming pool is 20 m long 15 m wide and 3 m deep. Find the cost of repairing the floor and wall at the rate of Rs 25 per square metre.

ANSWER:

Length of the swimming pool = 20 m

Breadth = 15 m

Height = 3 m

Now, surface area of the floor and all four walls of the pool = (length × breadth) + 2 × (breadth × height + length × height)

= (20 × 15) + 2 × (15 × 3 + 20 × 3)

= 300 + 2 × (45 + 60)

= 300 + 210 = 510 m²

The cost of repairing the floor and the walls is Rs 25/m².

 ∴ The total cost of repairing 510 m² area = 510 × 25 = Rs 12750 


Question 12:

The perimeter of a floor of a room is 30 m and its height is 3 m. Find the area of four walls of the room.

ANSWER:

Perimeter of the floor of the room = 30 m 

Height of the oom = 3 m 

Perimeter of a rectangle = 2 × (length + breadth) = 30 m 

So, area of the four walls = 2 × (length × height + breadth × height)

= 2 × (length + breadth) × height = 30 × 3 = 90 m² 


Question 13:

Show that the product of the areas of the floor and two adjacent walls of a cuboid is the square of its volume.

ANSWER:

Suppose that the length, breadth and height of the cuboidal floor are l cm, b cm and h cm, respectively.Then, area of the floor = l × b cm²

Area of the wall = b × h  cm²

Area of its adjacent wall = l × h cm²

Now, product of the areas of the floor and the two adjacent walls = (l × b) × (b × h) × (l × h) = l × b× h2 = (l × b × h)2

Also, volume of the cuboid = l × b × h cm²

∴ Product of the areas of the floor and the two adjacent walls = (l × b × h)2 = (volume)2 


Question 14:

The walls and ceiling of a room are to be plastered. The length, breadth and height of the room are 4.5 m, 3 m and 350 cm, respectively. Find the cost of plastering at the rate of Rs 8 per square metre.

ANSWER:

Length of a room = 4.5 m 

Breadth = 3 m 

Height = 350 cm               

= 350/100m    (∵ 1 m =  100 cm )                    

= 3.5 m

Since only the walls and the ceiling of the room are to be plastered, we have:

So, total area to be plastered

= area of the ceiling + area of the walls = (length × breadth) + 2 × (length × height + breadth × height)

= (4.5 × 3) + 2 × (4.5 × 3.5 + 3 × 3.5)

= 13.5 + 2 × (15.75 + 10.5) = 13.5 + 2 × (26.25) = 66 m²

Again, cost of plastering an area of 1 m² = Rs 8

 ∴ Total cost of plastering an area of 66 m² = 66 × 8 = Rs 528 


PAGE NO 21.23:

Question 15:

A cuboid has total surface area of 50 m² and lateral surface area is 30 m². Find the area of its base.

ANSWER:

Total surface area of the cuboid = 50 m² 

Its lateral surface area = 30 m²

Now, total surface area of the cuboid = 2 × (surface area of the base) + (surface area of the 4 walls)

⇒ 50 = 2 × (surface area of the base) + (30)

⇒ 2 × (surface area of the base) = 50−30 = 20

∴ Surface area of the base = 202 = 10 m²

Total surface area of the cuboid = 50 m² 

Its lateral surface area = 30 m²

Now, total surface area of the cuboid = 2 × (surface area of the base) + (surface area of the 4 walls)

⇒ 50 = 2 × (surface area of the base) + (30)

⇒ 2 × (surface area of the base) = 50-30 = 20

∴ Surface area of the base = 20/2 = 10 m²


Question 16:

A classroom is 7 m long, 6 m broad and 3.5 m high. Doors and windows occupy an area of 17 m². What is the cost of white-washing the walls at the rate of Rs 1.50 per m².

ANSWER:

Length of the classroom = 7m 

Breadth of the classroom = 6 m

Height of the classroom = 3.5 m

Total surface area of the classroom to be whitewashed = areas of the 4 walls

= 2 × (breadth × height + length × height)

= 2 × (6 × 3.5 + 7 × 3.5) = 2 × (21 + 24.5) = 91 m²

Also, the doors and windows occupy 17 m². 

So, the remaining area to be whitewashed = 91−17 = 74 m²

Given that the cost of whitewashing 1 m² of wall = Rs 1.50

∴ Total cost of whitewashing 74 m² of area = 74 × 1.50 = Rs 111 


Question 17:

The central hall of a school is 80 m long and 8 m high. It has 10 doors each of size 3 m × 1.5 m and 10 windows each of size 1.5 m × 1 m. If the cost of white-washing the walls of the hall at the rate of Rs 1.20 per m² is Rs 2385.60, find the breadth of the hall.

ANSWER:

Suppose that the breadth of the hall is b m.

Lenght of the hall = 80 m

Height of the hall = 8 m

Total surface area of 4 walls including doors and windows = 2 × (length × height + breadth × height)

= 2 × (80 × 8 + b × 8)

= 2 × (640 + 8b) = 1280 + 16b m²

The walls have 10 doors each of dimensions 3 m × 1.5 m. i.e., area of a door = 3 × 1.5 = 4.5 m² 

∴ Area of 10 doors = 10 × 4.5 = 45 m²

Also, there are 10 windows each of dimensions 1.5 m × 1 m.i.e., area of one window = 1.5 × 1 = 1.5 m²

∴ Area of 10 windows = 10 × 1.5 = 15 m²

Thus, total area to be whitwashed = (total area of 4 walls)−(areas of 10 doors + areas of 10 windows)

= (1280 + 16b)−(45 + 15) = 1280 + 16b−60

= 1220 + 16b m²

It is given that the cost of whitewashing 1 m² of area = Rs 1.20

∴ Total cost of whitewashing the walls = (1220 + 16b) × 1.20

= 1220 × 1.20 + 16b × 1.20

= 1464 + 19.2b

Since the total cost of whitewashing the walls is Rs 2385.60, we have:1464 + 19.2b = 2385.60

⇒ 19.2b = 2385.60−1464

⇒ 19.2b = 921.60

⇒ b = 921.60/19.2 = 48 m

∴ The breadth of the central hall is 48 m.

The document Chapter 21 - Mensuration - II (Part - 3), Class 8, Maths RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics is a part of the Class 8 Course RD Sharma Solutions for Class 8 Mathematics.
All you need of Class 8 at this link: Class 8
88 docs

FAQs on Chapter 21 - Mensuration - II (Part - 3), Class 8, Maths RD Sharma Solutions - RD Sharma Solutions for Class 8 Mathematics

1. How can I find the volume of a cylinder using the Mensuration - II concepts?
Ans. To find the volume of a cylinder, you can use the formula V = πr^2h, where V is the volume, r is the radius of the base, and h is the height of the cylinder. Substitute the values of r and h into the formula and calculate the volume.
2. What is the difference between surface area and volume in Mensuration - II?
Ans. Surface area refers to the total area of all the surfaces of a three-dimensional object, while volume refers to the amount of space occupied by the object. Surface area is measured in square units, while volume is measured in cubic units. In Mensuration - II, you will learn different formulas to calculate the surface area and volume of various geometric shapes.
3. How can I find the area of a triangle using Mensuration - II concepts?
Ans. To find the area of a triangle, you can use the formula A = 1/2 * base * height, where A is the area, base is the length of the base of the triangle, and height is the perpendicular distance from the base to the opposite vertex. Substitute the values of base and height into the formula and calculate the area.
4. What is the formula to calculate the surface area of a cone in Mensuration - II?
Ans. The formula to calculate the surface area of a cone is SA = πr(r + l), where SA is the surface area, r is the radius of the base, and l is the slant height of the cone. Substitute the values of r and l into the formula and calculate the surface area.
5. How can I find the volume of a sphere using Mensuration - II concepts?
Ans. To find the volume of a sphere, you can use the formula V = 4/3 * πr^3, where V is the volume and r is the radius of the sphere. Substitute the value of r into the formula and calculate the volume.
Related Searches

video lectures

,

Objective type Questions

,

pdf

,

past year papers

,

Important questions

,

Sample Paper

,

mock tests for examination

,

Semester Notes

,

Chapter 21 - Mensuration - II (Part - 3)

,

Exam

,

Class 8

,

Class 8

,

Maths RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

,

Maths RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

,

MCQs

,

practice quizzes

,

study material

,

Chapter 21 - Mensuration - II (Part - 3)

,

Previous Year Questions with Solutions

,

Summary

,

Viva Questions

,

Extra Questions

,

Chapter 21 - Mensuration - II (Part - 3)

,

Maths RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

,

shortcuts and tricks

,

ppt

,

Class 8

,

Free

;