Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE) PDF Download

Boundary Conditions at Interface

We have seen that the normal component of the electric field (and hence the electric field itself) is discontinuous a charged surface. In a similar way the magnetic field is coscontinuous across a surface which has surface current.

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

Consider interface of two regions, marked 1 and 2. A surface current flows which comes out of the plane of the paper.

Consider a thin pillbox of height h and area  Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE) perpendicular to the media with half below the surface and half above it. According to magnetostatic Gauss’s theorem  Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)  can be expressed as a surface integral,

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

Define the normal direction as the outward direction from the surface into the region 1. As h→0, contributions to the surface integral only comes from the top and the bottom caps, so that

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

which shows that the normal component of magnetic induction is continuous

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

In an identical fashion, it follows that since in Coulomb gauge, we have,  Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE) the normal component of the vector potential is continuous,

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

The tangential component, i.e. component of the magnetic field parallel to the interface has a discontinuity which can be calculated by taking a rectangular Amperian loop of length L and a negligible height h with its length being parallel to the interface. The current density, as in the first case comes out of the plane of the paper.

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

Let us define our coordinate system . In the figure shown, the interface is perpendicular to the page and the normal to the surface  Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE) is outward into the region 1. The unit vectors  Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE) and  Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE) Are both in the plane of the interface, with Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)coming out of the page and  Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE) also on the surface perpendicular toMagnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)so thatMagnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)andMagnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)form a right handed triad.

Let us calculate the line integral around the loop. Taking the long side of the loop to be parallel to  Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE) direction, the line integral of the magnetic field is (as h→0) 

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

By Ampere’s law, this should be equal to  Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE) Since the current flows on the surface and the normal to the loop is alongMagnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)we have

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

where we have used  Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE) Equating  Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE) to the line integral obtained earlier, we have,

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

Using the cyclic property of scalar triple product for the expression to the left and reversing the order of the dot product on the right , we can rewrite the left hand side and get,

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

which gives,

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

[This can be seen by substituting  Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE) in the preceding expression and realizing that since  Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE) lies on the interface,  Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE) This expression also includes the boundary condition on the normal component as well because the normal component of the right hand side is identically zero.

What about the boundary condition on the vector potential? We have seen that the normal component of the vector potential is continuous because of our choice of gauge. The tangential component is also continuous because  Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE) being equal to the magnetic flux through the plane of the loop is zero. Thus both the tangential and the normal component of the vector potential are continuous.

The discontinuity in the tangential component of the magnetic field, however, translates to a discontinuity in the normal derivative of the vector potential. Proof of this is left as an exercise.

Magnetic Scalar Potential

We had seen that since the curl of the magnetic field is non-zero, the field is non-conservative as a result of which, unlike in the case of the electrostatic field, we cannot define a scalar potential. However, if we restrict ourselves to region other than where a current source exists, the curl would be zero. In such a situation, we can define a scalar potential  Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE) corresponding to the magnetic field in the region.

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

which leads to

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

Along with the divergence for the magnetic field being zero, this leads to Laplace’s equation for the scalar magnetic potential,

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

The equation is similar to the case of electrostatic potential. The multiplicative factor μhas been introduced because of dimensional reasons and will be clarified later.

Example : Scalar potential for a line current

The problem has cylindrical symmetry. Taking the direction of the current along the z direction, the magnetic field is given by

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

where r is the distance of the point of observation from the wire. Expressing the equation defining the scalar potential in cylindrical coordinates, we have,

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

Only the second term of the left hand expression can give us the desired magnetic field,

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

This gives,

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

The scalar potential is thus proportional to the polar angle. The potential is multiple valued because as the origin is circled more than once, the angle increases by 2π.

Example : Scalar Potential for a Magnetic Dipole :

In the previous lecture, we have obtained expressions for the components of a magnetic dipole directed along the z direction. We have seen that the magnetic field can be written as

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

Writing the gradient in spherical polar and equating the components, we have,

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

Both these equations are satisfied if we choose,

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

Consider the magnetic moment to be generated by a circular current loop carrying a current I. Taking the direction of the magnetic moment along the z direction, he point of observation makes an angle θ with the normal to the plane of the loop. We can express this in terms of the solid angle subtended by the current loop.

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

The solid angle can be both positive and negative depending on the way the loop is viewed from the point of observation.

A comment about singlevaluedness of the scalar potential is appropriate here. When we take the line integral of the magnetic field, there is no discontinuity if the loop does not enclose any current. Thus as the point of observation is changed, there will be a discontinuity if it posses through the loop. In the following, the current loop is made to be the rim of an open surface, the shape of the surface is immaterial as long as the rim is the current loop. If we take any loop on this surface , there is no discontinuity if the loop does not go around the rim. If the shape is taken to be a hemisphere, the loop cannot start from a point on the upper hemisphere and pass on to the lower hemisphere. If the loop does pass through the current, we have,

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

so that  Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE) This is consistent with the fact that every time the loop is enclosed, the solid angle changes by 4π.

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

What about an arbitrary loop? We need to find the solid angle it makes at the point of observation. We can divide the current loop into a large mesh of small loops, each one of which behaves like a magnetic moment. The directions of adjacent loops cancel leaving only the contour of the loop, as shown. Since the discontinuity in the scalar potential when we traverse a current loop once is –I, If we traverse the loop so that it traces a solid angle Ω at the point of observation, the scalar potential would change by

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

Tutorial Assignment 

  1. Prove that the normal derivative of the vector potential is discontinuous across a surface carrying current.
  2. Calculate the scalar potential due to a solenoid on its axis at a distance z from the centre of the solenoid.

Solutions to Tutorial Assignments

1. We have shown that  Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

    In terms of vector potential, this can be written as 

  Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

Take the cross product of both sides with  Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE) To do so note that we can simplify  Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE) as follows. Expanding in terms of Cartesian components,

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

where,

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

Thus,

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

gives

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

We hade seen that each component of the vector potential is continuous at the boundary. Thus the first term must be zero. The tangential component of the second term is obviously zero which leaves us with only the normal component in the above equation. Once again the first term is zero, giving,

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

2. Choose the origin at the centre of the solenoid of length L. In Problem 1 of the Self Assessment Quiz, you will prove that the scalar potential at a distance z is given by

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

Let the number of turns per unit length be n. Consider a width dz’ of the solenoid located at z’ from the centre. The potential due to this is given by as the centre of the loop is shifted to z’)

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

The total potential at z is obtained by integrating this expression from  Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

Self Assessment Questions

  1. Calculate the magnetic scalar potential at a distance z from a circular current loop of radius a and hence calculate the magnetic field at that point.
  2. A current sheet of 10î (in kA/m) separates two regions of space at z=0. The magnetic field  Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE) in region 1 (z>0) is given by Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE) (in mT) exists. If both regions are non-magnetic, determine the field in region 2 (z<0).

Solutions to Self Assessment Questions

1. The problem is essentially to calculate the solid angle subtended by the current loop at a distance z from its centre. With the point where we need the scalar potential as the     centre draw a sphere of radius  Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

It is easy to show that the part of the sphere above the loop has an area  Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE) Since an area  Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE) subtends a solid angle 4π , the loop subtends 2π(1-Cosθ).In terms of the distance z from the centre of the loop, the solid angle is

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

Thus the scalar potential is given by

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

Thus

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

2. This is a simple application of the magnetostatic boundary condition  

   Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

In this case  Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE) Multiplying with  Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE) we get   Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE) Thus the magnetic field of induction in the second medium is  Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

The document Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE) is a part of the Electrical Engineering (EE) Course Electromagnetic Fields Theory (EMFT).
All you need of Electrical Engineering (EE) at this link: Electrical Engineering (EE)
11 videos|45 docs|73 tests

Up next

FAQs on Magnetostatics - 4 - Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

1. What is magnetostatics?
Ans. Magnetostatics is a branch of physics that deals with the study of magnetic fields that do not change over time. It focuses on the behavior of magnetic fields in the absence of electric currents or time-varying electric fields.
2. What are the key principles of magnetostatics?
Ans. The key principles of magnetostatics are the Biot-Savart law and Ampere's law. The Biot-Savart law describes the magnetic field produced by a steady current in a wire, while Ampere's law relates the magnetic field to the current through a closed loop.
3. How does magnetostatics differ from electromagnetism?
Ans. Magnetostatics only considers the behavior of magnetic fields in the absence of electric currents or time-varying electric fields, whereas electromagnetism involves the study of both electric and magnetic fields and their interactions. Magnetostatics is a subset of electromagnetism.
4. What are the applications of magnetostatics in everyday life?
Ans. Magnetostatics finds various applications in everyday life, such as in the design and operation of electric motors, generators, transformers, and magnetic resonance imaging (MRI) machines. It is also crucial in understanding the behavior of permanent magnets and magnetic materials.
5. How can magnetostatics be used in engineering and technology?
Ans. Magnetostatics plays a vital role in engineering and technology, particularly in the design of magnetic circuits, magnetic shielding, and the analysis of magnetic forces and torques. It is utilized in the development of magnetic sensors, magnetic levitation systems, and magnetic storage devices like hard drives.
11 videos|45 docs|73 tests
Download as PDF

Up next

Explore Courses for Electrical Engineering (EE) exam
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Viva Questions

,

mock tests for examination

,

pdf

,

Previous Year Questions with Solutions

,

Free

,

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

,

Semester Notes

,

Summary

,

Extra Questions

,

MCQs

,

ppt

,

video lectures

,

shortcuts and tricks

,

Important questions

,

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

,

past year papers

,

Magnetostatics - 4 | Electromagnetic Fields Theory (EMFT) - Electrical Engineering (EE)

,

study material

,

Sample Paper

,

Objective type Questions

,

Exam

,

practice quizzes

;