SSC CGL Exam  >  SSC CGL Notes  >  SSC CGL Tier 2 - Study Material, Online Tests, Previous Year  >  Bayes Theorem - Probability, Business Mathematics and Statistics

Bayes Theorem - Probability, Business Mathematics and Statistics | SSC CGL Tier 2 - Study Material, Online Tests, Previous Year PDF Download

This theorem is associated with the name of Reverend Thomas Bayes. It is also known as the inverse probability. Probabilities can be revised when new information pertaining to a random experiment is obtained. One of the important applications of the conditional probability is in the computation of unknown probabilities, on.the basis of the information supplied by the experiment or past records. That is, the applications of the results of probability theory involves estimating unknown probabilities and making decisions on the basis of new sample information. This concept is referred to as Bayes’ Theorem. Quite often the businessman has the extra information on a particular event, either through a personal belief or from the past history of the events. Revision of probability arises from a need to make better use of experimental information. Probabilities assigned on the basis of personal experience, before observing the outcomes of the experiment are called prior probabilities. For example, probabilities assigned to past sales records, to past number of defectives produced by a machine, are examples of prior probabilities. When the probabilities are revised with the use of Bayes’ rule, they are called posterior probabilities. Bayes’ theorem is useful in solving practical business problems in the light of additional information. Thus popularity of the theorem has been mainly because of its usefulness in revising a set of old probability (Prior Probability) in the light of additional information made available and to derive a set of new probabilily (i.e. Posterior Probability)

Bayes’ Theorem : An event  A can occurre only if one of the mutually exclusive and exhaustive set of events B1, B2,  ..... Bn occurs. Suppse that the unconditional probabilities

P(B1), P(B2), .... P(Bn)

and the conditional probabilities

P(A/B1), P(A/B2), .... P(A/Bn)

are known. Then the conditional probability P(Bi/A) of a specific event Bi, when A is stated to have actually accquared, is given by

This is known as Bayes’ Theorem.

The following  example illustrate the  application of Baye’s Theorem.

The above calculation can be verified as follows :

If 1,000 scooters were produced by the two plants in a particular week, the number of scooters produced by Plant I & Plant II are respectively :

1,000 x 80% = 800 scooters
1,000 x 20% = 200 scooters

The number of standard quality scooters produced by Plant I : 800 x 85/100 = 680 scooters

The number of standard quality scooters produced by Plant II : 200 x 65/100 = 130 Scooters.

The probability that a standard quality scooter was produced by Plant I is :

The probability that a standard quality scooter was produced by Plant II is :

The same process i.e. revision can be repeated if more information is made available. Thus it is a good theorem in improving the quality of probability in decision making under uncertainty.

Example 16 :

You note that your officer is happy on 60% of your calls, so you assign a probability of his being happy on your visit as 0.6 or 6/10. You have noticed also that if he is happy, he accedes to your request with a probability of 0.4 or 4/10 whereas if he is not happy, he acedes to the request with a probability of 0.1 or D
or 1/10 You call one day, and he accedes to your request. What is the probability of his being happy ?
Solution
:

Let- H be the Hypothesis that the officer is happy and the Hypothesis that the officer is not happy

Let A be the event that he accedes to request

To find P(H/A), according to Baye’s Theorem,

Example 17 :

A company has two plants to manufacture scooters. Plant I manufactures 80% of the scooters and plant II manufactures 20%. At Plant I, 85 out of 100 scooters are rated standard quality or better. At Plant II, only 65 out of 100 scooters are rated standard quality or better. What is the probability that the scooter selected at random came from Plant I if it is known that the scooter is of standard quality ?
What is the probability that the scooter came from Plant II if it is known that the scooter is of standard quality.

Solution :

Let A1 be the event of drawing a scooter produced by Plant I and A2 be the event of drawing a scooter produced by Plant II. B be the event of drawing a standard quality scooter produced by either Plant I or Plant II Then, from the first information :

From the additional information :

The required values are computed in the following table :

Event

Prior
Probabifity(2)

Condrrionaf
Probability(3)

Join t
Probability (4)

Posterior Probability
(Revised)(5) [4 ÷ P(B}]

A1

0.80

0.85

0.68

Bayes Theorem - Probability, Business Mathematics and Statistics | SSC CGL Tier 2 - Study Material, Online Tests, Previous Year

A2

0.20

0.65

0.13

Bayes Theorem - Probability, Business Mathematics and Statistics | SSC CGL Tier 2 - Study Material, Online Tests, Previous Year

 

1

 

P(B) = 0.81

1

 

From the first information we may say that the standard scooter is drawn   from   Plant   I   since   P(A1) = 80% which is greater than P(A2) = 20%,

From the additional information i.e. at Plant I, 85 out of 100 and at Plant II 65 out of 100 are rated standard quality, we can give better answer, Thus we may conclude that the standard quality of scooter is more likely drawn from the output by Plant I.

The document Bayes Theorem - Probability, Business Mathematics and Statistics | SSC CGL Tier 2 - Study Material, Online Tests, Previous Year is a part of the SSC CGL Course SSC CGL Tier 2 - Study Material, Online Tests, Previous Year.
All you need of SSC CGL at this link: SSC CGL
1365 videos|1312 docs|1010 tests

Top Courses for SSC CGL

FAQs on Bayes Theorem - Probability, Business Mathematics and Statistics - SSC CGL Tier 2 - Study Material, Online Tests, Previous Year

1. What is Bayes' Theorem?
Ans. Bayes' Theorem is a mathematical formula that describes how to update the probability of an event based on new evidence. It is named after Thomas Bayes, an English statistician, and is widely used in probability theory and statistics.
2. How is Bayes' Theorem used in business mathematics and statistics?
Ans. Bayes' Theorem is applied in business mathematics and statistics to calculate conditional probabilities and make predictions based on prior knowledge and new information. It helps in decision-making processes, risk analysis, and forecasting by incorporating new data into existing probabilities.
3. Can you provide an example of how Bayes' Theorem is used in business?
Ans. Sure! Let's say a company wants to launch a new product but is unsure of its success. They conduct market research and find that 80% of customers who purchase a similar product from competitors are satisfied. However, they also know that only 30% of customers will switch to their product. By applying Bayes' Theorem, the company can calculate the probability of a customer being satisfied after switching to their product.
4. What are the limitations of Bayes' Theorem in business applications?
Ans. Bayes' Theorem relies on accurate prior probabilities and assumes independence between events, which may not always hold true in business scenarios. It also requires a large amount of data for accurate predictions, and the results can be sensitive to changes in prior probabilities. Additionally, the theorem assumes that all possible outcomes are accounted for, which may not be the case in complex business situations.
5. Can Bayes' Theorem be used to improve decision-making in financial investments?
Ans. Yes, Bayes' Theorem can be applied to financial investments. For example, an investor can use the theorem to update the probability of a stock's success based on new market information. By incorporating prior knowledge and the likelihood of different market conditions, Bayes' Theorem can help investors make more informed decisions and manage risks effectively.
1365 videos|1312 docs|1010 tests
Download as PDF
Explore Courses for SSC CGL exam

Top Courses for SSC CGL

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

MCQs

,

Objective type Questions

,

Bayes Theorem - Probability

,

video lectures

,

Previous Year

,

shortcuts and tricks

,

past year papers

,

Business Mathematics and Statistics | SSC CGL Tier 2 - Study Material

,

Bayes Theorem - Probability

,

Online Tests

,

Bayes Theorem - Probability

,

Online Tests

,

mock tests for examination

,

Previous Year

,

Business Mathematics and Statistics | SSC CGL Tier 2 - Study Material

,

Exam

,

pdf

,

Important questions

,

Free

,

Business Mathematics and Statistics | SSC CGL Tier 2 - Study Material

,

practice quizzes

,

ppt

,

Previous Year Questions with Solutions

,

Previous Year

,

Summary

,

Sample Paper

,

study material

,

Online Tests

,

Semester Notes

,

Viva Questions

,

Extra Questions

;