Time Invariant & Time Variant Systems | Digital Signal Processing - Electronics and Communication Engineering (ECE) PDF Download

For a time-invariant system, the output and input should be delayed by some time unit. Any delay provided in the input must be reflected in the output for a time invariant system.

Time Invariant & Time Variant Systems | Digital Signal Processing - Electronics and Communication Engineering (ECE)

Examples

a) y(T) = x(2T)

If the above expression, it is first passed through the system and then through the time delay (as shown in the upper part of the figure); then the output will become x(2T−2t). Now, the same expression is passed through a time delay first and then through the system (as shown in the lower part of the figure). The output will become x(2T−t)x.

Hence, the system is not a time-invariant system.

b) y(T) = sin[x(T)]

If the signal is first passed through the system and then through the time delay process, the output be sinx(T−t). Similarly, if the system is passed through the time delay first then through the system then output will be sinx(T−t). We can see clearly that both the outputs are same. Hence, the system is time invariant.

For a time variant system, also, output and input should be delayed by some time constant but the delay at the input should not reflect at the output. All time scaling cases are examples of time variant system. Similarly, when coefficient in the system relationship is a function of time, then also, the system is time variant.

Time Invariant & Time Variant Systems | Digital Signal Processing - Electronics and Communication Engineering (ECE)

Examples

a) y(t) = x[cosT]

If the above signal is first passed through the system and then through the time delay, the output will be xcos(T−t). If it is passed through the time delay first and then through the system, it will be x(cosT−t). As the outputs are not same, the system is time variant.

b) y(T) = cosT.x(T)

If the above expression is first passed through the system and then through the time delay, then the output will be cos(T−t)x(T−t). However, if the expression is passed through the time delay first and then through the system, the output will be cosT.x(T−t). As the outputs are not same, clearly the system is time variant.

The document Time Invariant & Time Variant Systems | Digital Signal Processing - Electronics and Communication Engineering (ECE) is a part of the Electronics and Communication Engineering (ECE) Course Digital Signal Processing.
All you need of Electronics and Communication Engineering (ECE) at this link: Electronics and Communication Engineering (ECE)
3 videos|50 docs|54 tests

Top Courses for Electronics and Communication Engineering (ECE)

FAQs on Time Invariant & Time Variant Systems - Digital Signal Processing - Electronics and Communication Engineering (ECE)

1. What is a time-invariant system in electrical engineering?
Ans. A time-invariant system in electrical engineering is a system whose output does not change with time. This means that if the input to the system is delayed or advanced in time, the output will also be delayed or advanced by the same amount. The system's behavior remains constant over time.
2. Can you provide an example of a time-invariant system in electrical engineering?
Ans. Yes, one example of a time-invariant system in electrical engineering is a resistor. A resistor always behaves the same way regardless of when the input signal is applied. If a voltage signal is applied across a resistor, the current flowing through it will be directly proportional to the voltage, regardless of when the voltage is applied.
3. What is a time-variant system in electrical engineering?
Ans. A time-variant system in electrical engineering is a system whose output changes with time. This means that the system's behavior is not constant over time and can vary based on the timing of the input signal. The output of a time-variant system can depend on the current time, as well as the characteristics of the input signal.
4. Can you provide an example of a time-variant system in electrical engineering?
Ans. Yes, one example of a time-variant system in electrical engineering is an amplifier with temperature-dependent characteristics. The output of such an amplifier can vary with time due to changes in temperature, which affects its gain and other performance parameters. Therefore, the system's behavior is not constant over time.
5. What are the practical implications of time-invariant and time-variant systems in electrical engineering?
Ans. Understanding whether a system is time-invariant or time-variant is crucial in electrical engineering for various reasons. Time-invariant systems allow for easier analysis and design since their behavior remains constant over time. On the other hand, time-variant systems require more complex analysis and design techniques to account for their changing behavior. Additionally, time-variant systems can introduce challenges in maintaining system stability and ensuring reliable performance in real-world applications.
3 videos|50 docs|54 tests
Download as PDF
Explore Courses for Electronics and Communication Engineering (ECE) exam

Top Courses for Electronics and Communication Engineering (ECE)

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Previous Year Questions with Solutions

,

Time Invariant & Time Variant Systems | Digital Signal Processing - Electronics and Communication Engineering (ECE)

,

Viva Questions

,

video lectures

,

Sample Paper

,

Semester Notes

,

Time Invariant & Time Variant Systems | Digital Signal Processing - Electronics and Communication Engineering (ECE)

,

Exam

,

Objective type Questions

,

pdf

,

Extra Questions

,

MCQs

,

mock tests for examination

,

past year papers

,

Free

,

ppt

,

Time Invariant & Time Variant Systems | Digital Signal Processing - Electronics and Communication Engineering (ECE)

,

Important questions

,

Summary

,

practice quizzes

,

shortcuts and tricks

,

study material

;