1. Limitations of Hadoop Article – Objective
Although Hadoop is the most powerful tool of big data, there are various limitations of Hadoop like Hadoop is not suited for small files, it cannot handle firmly the live data, slow processing speed, not efficient for iterative processing, not efficient for caching etc.
In this tutorial on limitations of Hadoop, firstly we will learn about what is Hadoop and what are the pros and cons of Hadoop. We will see features of Hadoop due to which it is so popular. We will also see 13 Big Disadvantages of Hadoop due to which Apache Spark and Apache Flink came into existence. We will learn about various ways to overcome the drawbacks of Hadoop.
2. Hadoop – Introduction & Features
Let us start with what is Hadoop and what are Hadoop features that make it so popular.
Hadoop is an open-source software framework for distributed storage and distributed processing of extremely large data sets. Important features of Hadoop are:
But as all technologies have pros and cons, similarly there are many limitations of Hadoop as well. As we have already seen features and advantages of Hadoop above, now let us see the limitations of Hadoop, due to which Apache Spark and Apache Flink came into picture.
3. Big Limitations of Hadoop for Big Data Analytics
Various limitations of Hadoop are discussed below in this section along with their solution-
3.1. Issue with Small Files
Hadoop is not suited for small data. (HDFS) Hadoop distributed file system lacks the ability to efficiently support the random reading of small files because of its high capacity design.
Small files are the major problem in HDFS. A small file is significantly smaller than the HDFS block size (default 128MB). If we are storing these huge numbers of small files, HDFS can’t handle these lots of files, as HDFS was designed to work properly with a small number of large files for storing large data sets rather than a large number of small files. If there are too many small files, then the NameNode will be overloaded since it stores the namespace of HDFS.
Solution-
3.2. Slow Processing Speed
In Hadoop, with a parallel and distributed algorithm, MapReduce process large data sets. There are tasks that need to be performed: Map and Reduce and, MapReduce requires a lot of time to perform these tasks thereby increasing latency. Data is distributed and processed over the cluster in MapReduce which increases the time and reduces processing speed.
Solution-
As a Solution to this Limitation of Hadoop spark has overcome this issue, by in-memory processing of data. In-memory processing is faster as no time is spent in moving the data/processes in and out of the disk. Spark is 100 times faster than MapReduce as it processes everything in memory. Flink is also used, as it processes faster than spark because of its streaming architecture and Flink may be instructed to process only the parts of the data that have actually changed, thus significantly increases the performance of the job.
3.3. Support for Batch Processing only
Hadoop supports batch processing only, it does not process streamed data, and hence overall performance is slower. MapReduce framework of Hadoop does not leverage the memory of the Hadoop cluster to the maximum.
Solution-
To solve these limitations of Hadoop spark is used that improves the performance, but Spark stream processing is not as much efficient as Flink as it uses micro-batch processing. Flink improves the overall performance as it provides single run-time for the streaming as well as batch processing. Flink uses native closed loop iteration operators which make machine learning and graph processing faster.
3.4. No Real-time Data Processing
Apache Hadoop is designed for batch processing, that means it take a huge amount of data in input, process it and produce the result. Although batch processing is very efficient for processing a high volume of data, but depending on the size of the data being processed and computational power of the system, an output can be delayed significantly. Hadoop is not suitable for Real-time data processing.
Solution-
3.5. No Delta Iteration
Hadoop is not so efficient for iterative processing, as Hadoop does not support cyclic data flow(i.e. a chain of stages in which each output of the previous stage is the input to the next stage).
Solution-
Apache Spark can be used to overcome this type of Limitations of Hadoop, as it accesses data from RAM instead of disk, which dramatically improves the performance of iterative algorithms that access the same dataset repeatedly. Spark iterates its data in batches. For iterative processing in Spark, each iteration has to be scheduled and executed separately.
3.6. Latency
In Hadoop, MapReduce framework is comparatively slower, since it is designed to support different format, structure and huge volume of data. In MapReduce, Map takes a set of data and converts it into another set of data, where individual element are broken down into key value pair and Reduce takes the output from the map as input and process further and MapReduce requires a lot of time to perform these tasks thereby increasing latency.
Solution-
Spark is used to reduce this limitation of Hadoop, Apache spark is yet another batch system but it is relatively faster since it caches much of the input data on memory by RDD(Resilient Distributed Dataset) and keeps intermediate data in memory itself. Flink’s data streaming achieves low latency and high throughput.
Refer this guide to learn how to create RDD in Apache Spark.
3.7. Not Easy to Use
In Hadoop, MapReduce developers need to hand code for each and every operation which makes it very difficult to work. MapReduce has no interactive mode, but adding one such as hive and pig makes working with MapReduce a little easier for adopters.
Solution-
To solve this Drawback of Hadoop, we can use spark. Spark has interactive mode so that developers and users alike can have intermediate feedback for queries and other action. Spark is easy to program as it has tons of high-level operators. Flink can also be easily used as it also has high-level operators. This way spark can solve many limitations of Hadoop.
3.8. Security
Hadoop can be challenging in managing the complex application. If the user doesn’t know how to enable platform who is managing the platform, your data could be at huge risk. At storage and network levels, Hadoop is missing encryption, which is a major point of concern. Hadoop supports Kerberos authentication, which is hard to manage.
HDFS supports access control lists (ACLs) and a traditional file permissions model. However, third party vendors have enabled an organization to leverage Active Directory Kerberos and LDAP for authentication.
Solution-
Spark provides security bonus to overcome these limitations of Hadoop. If we run spark in HDFS, it can use HDFS ACLs and file-level permissions. Additionally, Spark can run on YARN giving it the capability of using Kerberos authentication.
3.9. No Abstraction
Hadoop does not have any type of abstraction so MapReduce developers need to hand code for each and every operation which makes it very difficult to work.
Solution-
To overcome these Drawback of Hadoop, Spark is used in which we have RDD abstraction for batch. Flink has Dataset abstraction.
3.10. Vulnerable by Nature
Hadoop is entirely written in java, a language most widely used, hence java been most heavily exploited by cyber criminals and as a result, implicated in numerous security breaches.
3.11. No Caching
Hadoop is not efficient for caching. In Hadoop, MapReduce cannot cache the intermediate data in memory for a further requirement which diminishes the performance of Hadoop.
Solution-
Spark and Flink can overcome this limitation of hadoop, as Spark and Flink cache data in memory for further iterations which enhance the overall performance.
3.12. Lengthy Line of Code
Hadoop has 1,20,000 line of code, the number of lines produces the number of bugs and it will take more time to execute the program.
Solution-
Although Spark and Flink are written in scala and java but they are implemented in Scala, so the number of line of code is lesser than Hadoop. So it will also take less time to execute the program and solve the lenthy line of code limitations of Hadoop.
To learn Scala get Best Scala books to become a master in Scala.
3.13. Uncertainty
Hadoop only ensures that data job is complete, but it’s unable to guarantee when the job will be complete.
4. Limitations of Hadoop and Its solutions – Conclusion
As a result of Limitations of Hadoop, the need of Spark and Flink emerged. Thus made the system more friendly to play with a huge amount of data. Spark provides in-memory processing of data thus improves the processing speed. Flink improves the overall performance as it provides single run-time for the streaming as well as batch processing. Spark provides security bonus.
1 videos|14 docs
|
1. What are the limitations of Hadoop? |
2. How can the scalability limitation of Hadoop be addressed? |
3. What are the drawbacks of Hadoop's complexity? |
4. What are the alternatives to Hadoop for real-time processing? |
5. How can the single point of failure issue in Hadoop be mitigated? |
|
Explore Courses for Software Development exam
|