Class 7 Exam  >  Class 7 Notes  >  RD Sharma Solutions for Class 7 Mathematics  >  RD Sharma Solutions (Part - 1) - Ex - 7.2, Algebraic Expressions, Class 7, Math

RD Sharma Solutions (Part - 1) - Ex - 7.2, Algebraic Expressions, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics PDF Download

Question 1:

Add the following:
 (i) 3x and 7x
 (ii) −5xy and 9xy

Answer 1:

We have
(i) 3x + 7x = (3 + 7)x = 10x
(ii) -5xy + 9xy = ( -5 + 9)xy = 4xy

Question 2:

Simplify each of the following:
 (i) 7x3y + 9yx3
 (ii) 12a2b + 3ba2

Answer 2:

Simplifying the given expressions, we have
(i) 7x3y + 9yx3 = (7 + 9)x3y = 16x3y
(ii) 12a2b + 3ba2 = (12 + 3)a2b = 15a2b

Question 3:

Add the following:
 (i) 7abc, −5abc, 9abc, −8abc
 (ii) 2x2y, − 4x2y, 6x2y, −5x2y

Answer 3:

Adding the given terms, we have
(i) 7abc + (- 5abc) + (9 abc) + (- 8abc)
    = 7abc - 5abc + 9abc - 8abc
    = (7 - 5 + 9 - 8)abc
    = (16 - 13)abc
    = 3abc

(ii) 2x2y + (- 4x2y) + 6x2y + (- 5x2y)
    = 2x2y - 4x2y + 6x2y - 5x2y
    = (2 - 4 + 6 - 5)x2y
    = (8 - 9)x2y
    = -x2y

 

Question 4:

Add the following expressions:
 (i) x3−2x2y+3xy2−y3, 2x3−5xy2+3x2y−4y3x3-2x2y+3xy2-y3, 2x3-5xy2+3x2y-4y3
 (ii) a4−2a3b+3ab3+4a2b2+3b4,−2a4−5ab3+7a3b−6a2b2+b4a4-2a3b+3ab3+4a2b2+3b4,-2a4-5ab3+7a3b-6a2b2+b4

Answer 4:

Adding the given expressions, we have
(i) x3- 2x2y + 3xy2- y3+ 2x3- 5xy2 + 3x2y- 4y3
     Collecting positive and negative like terms together, we get
     x3+ 2x3- 2x2y + 3x2y + 3xy2- 5xy2 - y3 - 4y3
   = 3x3 + x2y - 2xy2 - 5y3

(ii) (a4- 2a3b + 3ab3 + 4a2b2 + 3b4) + (-2a4- 5ab3 + 7a3b - 6a2b2 + b4)
      a4- 2a3b + 3ab3 + 4a2b2 + 3b4 - 2a4- 5ab3 + 7a3b - 6a2b2 + b4
      Collecting positive and negative like terms together, we get
     a4 - 2a4 - 2a3b + 7a3b + 3ab3 - 5ab3 + 4a2b2 - 6a2b2 + 3b4 + b4
    = - a4 + 5a3b - 2ab3 -  2a2b2 + 4b4

Question 5:

Add the following expressions:
 (i) 8a−6ab+5b, −6a−ab−8b and −4a+2ab+3b8a-6ab+5b, -6a-ab-8b and -4a+2ab+3b
 (ii) 5x3+7+6x−5x2, 2x2−8−9x, 4x−2x2+3x3, 3x3−9x−x2 and x−x2−x3−45x3+7+6x-5x2, 2x2-8-9x, 4x-2x2+3x3, 3x3-9x-x2 and x-x2-x3-4

Answer 5:

(i) Required expression = (8a - 6ab + 5b) + (- 6a - ab - 8b) + ( - 4a + 2ab + 3b)
     Collecting positive and negative like terms together, we get
     8a - 6a - 4a - 6ab - ab + 2ab + 5b - 8b + 3b
     = 8a - 10a - 7ab + 2ab + 8b - 8b
     = - 2a - 5ab

(ii) Required expression = (5x3 + 7 + 6x - 5x2) + (2x2 - 8 - 9x) + (4x - 2x2 + 3x3) + (3x3- 9x - x2) + ( x - x2- x3- 4)
      Collecting positive and negative like terms together, we get
      5x3+ 3x3 + 3x3- x3- 5x2 + 2x2 - 2x2 - x2- x2 + 6x - 9x + 4x - 9x + x + 7 - 8 - 4
    = 11x3 - x3 - 7x2 + 11x - 18x + 7 - 12
    = 10x3 - 7x2 - 7x - 5

Question 6:

Add the following:
 (i)x−3y−2z
 5x+7y−8z
 3x−2y+5z

 (ii)4ab−5bc+7ca
 −3ab+2bc−3ca
 5ab−3bc+4ca

Answer 6:

(i)  Required expression = (x - 3y - 2z) + (5x +7y - 8z) +(3x - 2y + 5z)
     Collecting positive and negative like terms together, we get
     x + 5x + 3x - 3y + 7y - 2y - 2z - 8z + 5z
  = 9x - 5y + 7y - 10z + 5z
  = 9x + 2y - 5z

(ii) Required expression = (4ab - 5bc + 7ca) + (- 3ab + 2bc - 3ca ) + (5ab - 3bc + 4ca)
      Collecting positive and negative like terms together, we get
      4ab - 3ab + 5ab - 5bc + 2bc - 3bc + 7ca - 3ca + 4ca
   = 9ab - 3ab - 8bc + 2bc + 11 ca  - 3ca
   = 6ab - 6bc + 8ca

Question 7:

Add 2x2 − 3x + 1 to the sum of 3x2 − 2x and 3x + 7.

Answer 7:

 Sum of 3x2 - 2x and 3x + 7
= (3x2 - 2x) + ( 3x +7)
= 3x2 - 2x + 3x + 7
= (3x2 + x  + 7)
Now, required expression = (2x2 - 3x + 1) + (3x2 + x  + 7)
                                            = 2x2 + 3x- 3x + x + 1 + 7
                                            = 5x2 - 2x + 8

Question 8:

Add x2 + 2xy + y2 to the sum of x2 − 3y2 and 2x2y2+ 9.

Answer 8:

Sum of x2 - 3y2 and 2x2 - y2 + 9
= (x2 - 3y2) + (2x2 - y2 + 9)
= x2 + 2x2 - 3y2 - y2+ 9
= 3x2 - 4y2 + 9

Now, required expression = (x2 + 2xy + y2) + (3x2 - 4y2 + 9)
                                       = x2 + 3x2 + 2xy + y2 - 4y2 + 9
                                       = 4x2 + 2xy  - 3y2 + 9

The document RD Sharma Solutions (Part - 1) - Ex - 7.2, Algebraic Expressions, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics is a part of the Class 7 Course RD Sharma Solutions for Class 7 Mathematics.
All you need of Class 7 at this link: Class 7
97 docs

Top Courses for Class 7

FAQs on RD Sharma Solutions (Part - 1) - Ex - 7.2, Algebraic Expressions, Class 7, Math - RD Sharma Solutions for Class 7 Mathematics

1. What are algebraic expressions?
Ans. Algebraic expressions are mathematical expressions that contain variables, constants, and arithmetic operations such as addition, subtraction, multiplication, and division. These expressions are made up of a combination of numbers and letters, where the letters represent unknown values or variables.
2. How do you simplify algebraic expressions?
Ans. To simplify algebraic expressions, you need to combine like terms. Like terms are terms that have the same variable with the same exponent. You can combine these terms by adding or subtracting their coefficients. Additionally, you can use the distributive property to simplify expressions by multiplying numbers or variables outside the parentheses with the terms inside the parentheses.
3. What are the different types of algebraic expressions?
Ans. There are several types of algebraic expressions, including monomials, binomials, trinomials, and polynomials. - Monomials are expressions with only one term, such as 3x or 5y^2. - Binomials are expressions with two terms, such as 2x + 3 or 4y - 7. - Trinomials are expressions with three terms, such as 2x^2 + 3x - 5. - Polynomials are expressions with more than three terms, such as 2x^3 + 3x^2 - 5x + 7.
4. How do you add and subtract algebraic expressions?
Ans. To add or subtract algebraic expressions, you need to combine like terms. Start by identifying the like terms, which are terms with the same variable and exponent. Then, add or subtract their coefficients while keeping the variable and exponent the same. If a term does not have a like term, bring it down as it is. Finally, simplify the expression by combining any remaining like terms.
5. Can you give an example of simplifying an algebraic expression?
Ans. Sure! Let's simplify the expression 3x + 2y - 5x + 4y. First, combine like terms: 3x - 5x = -2x 2y + 4y = 6y The simplified expression is -2x + 6y.
Explore Courses for Class 7 exam

Top Courses for Class 7

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Algebraic Expressions

,

Class 7

,

Algebraic Expressions

,

Math | RD Sharma Solutions for Class 7 Mathematics

,

Free

,

Objective type Questions

,

RD Sharma Solutions (Part - 1) - Ex - 7.2

,

ppt

,

past year papers

,

practice quizzes

,

RD Sharma Solutions (Part - 1) - Ex - 7.2

,

mock tests for examination

,

shortcuts and tricks

,

Summary

,

Semester Notes

,

pdf

,

Sample Paper

,

RD Sharma Solutions (Part - 1) - Ex - 7.2

,

study material

,

video lectures

,

Important questions

,

Math | RD Sharma Solutions for Class 7 Mathematics

,

Algebraic Expressions

,

Viva Questions

,

Previous Year Questions with Solutions

,

Math | RD Sharma Solutions for Class 7 Mathematics

,

Exam

,

Extra Questions

,

MCQs

,

Class 7

,

Class 7

;