Class 7 Exam  >  Class 7 Notes  >  RD Sharma Solutions for Class 7 Mathematics  >  RD Sharma Solutions (Part - 1) - Ex-14.2, Lines and Angles, Class 7, Math

RD Sharma Solutions (Part - 1) - Ex-14.2, Lines and Angles, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics PDF Download

Question 1:

In Fig., line n is a transversal to lines l and m. Identify the following:

 

RD Sharma Solutions (Part - 1) - Ex-14.2, Lines and Angles, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics      RD Sharma Solutions (Part - 1) - Ex-14.2, Lines and Angles, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics          RD Sharma Solutions (Part - 1) - Ex-14.2, Lines and Angles, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

 

(i) Alternate and corresponding angles in Fig. (i).
(ii) Angles alternate to ∠d and ∠g and angles corresponding to angles ∠f and ∠h in Fig. (ii).
(iii) Angle alternate to ∠PQR, angle corresponding to ∠RQF and angle alternate to ∠PQE in Fig. (iii).
(iv) Pairs of interior and exterior angles on the same side of the transversal in Fig. (ii).

Answer 1:

(i) Figure (i)
Corresponding angles:
∠EGB and ∠GHD
∠HGB and ∠FHD
∠EGA and ∠GHC
∠AGH and ∠CHF
Alternate angles:
∠EGB and ∠CHF
∠HGB and ∠CHG
∠EGA and ∠FHD
∠AGH and ∠GHD

(ii) Figure (ii)
Alternate angle to ∠d is ∠e.
Alternate angle to ∠g is ∠b.
Also,
Corresponding angle to ∠f is ∠c.
Corresponding angle to ∠h is ∠a.

(iii) Figure (iii)
Angle alternate to PQR is QRA.
Angle corresponding to RQF is ARB.
Angle alternate to POE is ARB.

(iv) Figure (ii)
Pair of interior angles are
a and ∠e
d and ∠f
Pair of exterior angles are
b and ∠h
c and ∠g

 

Question 2:

In Fig., AB and CD are parallel lines intersected by a transversal PQ at L and M respectively. If ∠CMQ = 60°, find all other angles in the figure.

RD Sharma Solutions (Part - 1) - Ex-14.2, Lines and Angles, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

 

Answer 2:

∠ALM = ∠CMQ = 60°60°        (Corresponding angles)
∠LMD = ∠CMQ = 60°60°        (Vertically opposite angles)
∠ALM = ∠PLB = 60°60°          (Vertically opposite angles)
Since
∠CMQ + ∠QMD = 180°180°     (Linear pair)
∴ ∠QMD = 180°−60°=120°
∠QMD = ∠MLB = 120°        (Corresponding angles)
∠QMD = ∠CML = 120°        (Vertically opposite angles)
∠MLB = ∠ALP = 120°          (Vertically opposite angles)

 

Question 3:

In Fig., AB and CD are parallel lines intersected by a transversal PQ at L and M respectively. If ∠LMD = 35° find ∠ALM and ∠PLA.

RD Sharma Solutions (Part - 1) - Ex-14.2, Lines and Angles, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

Answer 3:

In the given Fig., AB || CD.
∠ALM=∠LMD=35°     (Alternate interior angles)
Since ∠PLA+∠ALM=180°     (Linear pair)
∴∠PLA=180°−35°=145° 

 

Question 4:

The line n is transversal to line l and m in Fig. Identify the angle alternate to ∠13, angle corresponding to ∠15, and angle alternate to ∠15.

RD Sharma Solutions (Part - 1) - Ex-14.2, Lines and Angles, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

Answer 4:

In this given Fig., line l || m.
Here,
Alternate angle to ∠13 is ∠7.
Corresponding angle to ∠15 is ∠7.
Alternate angle to ∠15 is ∠5.

 

Question 5:

In Fig., line l || m and n is a transversal. If ∠1 = 40°, find all the angles and check that all corresponding angles and alternate angles are equal.

RD Sharma Solutions (Part - 1) - Ex-14.2, Lines and Angles, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

 

Answer 5:

In the given figure, l || m.
Here,
∠1+∠2=180°     (Linear pair)
∴ ∠2=180°−∠1=180°- 40°=140°
∠5=∠1=40°        (Corresponding angles)
∠3=∠1=40°        (Vertically opposite angles)
∠7=∠3=40°        (Corresponding angles)
∠7=∠5=40°        (Vertically opposite angles)
 

Also,
∠2=∠6=140°        (Corresponding angles)
∠2=∠4=140°        (Vertically opposite angles)
∠4=∠8=140°        (Corresponding angles)
∠8=∠6=40°          (Vertically opposite angles)

 

Thus,
∠2=∠8, ∠3=∠5, ∠6=∠4, ∠1=∠7
Hence, alternate angles are equal.

 

Question 6:

In Fig., line l || m and a transversal n cuts them at P and Q respectively. If ∠1 = 75°, find all other angles

RD Sharma Solutions (Part - 1) - Ex-14.2, Lines and Angles, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

 

Answer 6:

In the given figure, l || m, n is a transversal line and ∠1 = 75°.
Thus, we have:
∠1+∠2=180°        (Linear pair)
⇒∠2=180°−∠1=180°−75°=105°
∴∠1=∠5=75°         (Corresponding angles)
∠1=∠3=75°             (Vertically opposite angles)
∠5=∠7=75°             (Vertically opposite angles)
Now, 
∠2=∠6=105°         (Corresponding angles)
∠6=∠8=105°          (Vertically opposite angles)
∠2=∠4=105°          (Vertically opposite angles)

 

Question 7:

In Fig., AB || CD and a transversal PQ cuts them at L and M respectively. If ∠QMD = 100°, find all other angles.

RD Sharma Solutions (Part - 1) - Ex-14.2, Lines and Angles, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

 

Answer 7:

In the given figure, AB || CD, PQ is a transversal line and QMD = 100°.
Thus, we have:
DMQ + QMC = 180°    (Linear pair)
∴∠QMC=180°−∠DMQ=180°−100°=80°

Thus,
∠DMQ = ∠BLM = 100°         (Corresponding angles)
∠DMQ = ∠CML = 100°         (Vertically opposite angles)
∠BLM = ∠PLA = 100°           (Vertically opposite angles)
Also,
∠CMQ = ∠ALM = 80°         (Corresponding angles)
∠CMQ = ∠DML = 80°         (Vertically opposite angles)
∠ALM = ∠PLB = 80°           (Vertically opposite angles)

 

Question 8:

In Fig., l || m and p || q. Find the values of xyzt.

RD Sharma Solutions (Part - 1) - Ex-14.2, Lines and Angles, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

 

Answer 8:

In the given figure, l || m and p || q.
Thus, we have:
∠z=80°∠z=80°                (Vertically opposite angles)
∠z=∠t=80°∠z=∠t=80°       (Corresponding angles)
∠z=∠y=80°∠z=∠y=80°       (Corresponding angles)
∠x=∠y=80°∠x=∠y=80°       (Corresponding angles)

 

Question 9:

In Fig., line l || m, ∠1 = 120° and ∠2 = 100°, find out ∠3 and ∠4.

 

RD Sharma Solutions (Part - 1) - Ex-14.2, Lines and Angles, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

 

Answer 9:

 

RD Sharma Solutions (Part - 1) - Ex-14.2, Lines and Angles, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

 

In the given figure, ∠1 = 120° and ∠2 =100°.
Since l || m, so
∠2=∠5=100°              (Alternate interior angles)
∠5+∠3=180°                (Linear pair)
⇒∠3=180°−∠5=180°−100°=80°                  
Also,
∠1+∠6=180°          (Linear pair)
⇒∠6=180°−∠1=180°−120°=60°

We know that the sum of all the angles of triangle is 180°.
∴∠6+∠3+∠4=180°
⇒60°+80°+∠4=180°
⇒140°+∠4=180°
⇒∠4=180°−140°=40°

 

Question 10:

In Fig., line l || m. Find the values of abcd. Give reasons.

RD Sharma Solutions (Part - 1) - Ex-14.2, Lines and Angles, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

 

Answer 10:

In the given figure, line l || m.
Thus, we have:
∠a=110°        (Vertically opposite angles)
∠b=∠a=110°               (Corresponding angles)
∠d=85°           (Vertically opposite angles)
∠c=∠d=85°                  (Corresponding angles)

 

Question 11:

In Fig., AB || CD and ∠1 and ∠2 are in the ratio 3 : 2. Determine all angles from 1 to 8.

RD Sharma Solutions (Part - 1) - Ex-14.2, Lines and Angles, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

Answer 11:

In the given figure, AB || CD and t is a transversal line.
Now, let:
∠1=3x
∠2=2x
Thus, we have:
∠1+∠2=180°      (Linear pair)
∴ 3x+2x=180°
⇒5x=180°

RD Sharma Solutions (Part - 1) - Ex-14.2, Lines and Angles, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

Thus,∠1=3×36°=108°
∠2=2×36°=72°

Now,
∠1=∠5=108°      (Corresponding angles)
∠1=∠3=108°      (Vertically opposite angles)
∠5=∠7=108°      (Vertically opposite angles)
∠2=∠6=72°        (Corresponding angles)
∠4=∠2=72°        (Vertically opposite angles)
∠8=∠6=72°        (Vertically opposite angles)

 

Question 12:

In Fig., lm and n are parallel lines intersected by transversal p at XY and Z respectively. Find ∠1, ∠2 and ∠3.

RD Sharma Solutions (Part - 1) - Ex-14.2, Lines and Angles, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics

 

Answer 12:

In the given figure, l || m || n and p is a transversal line.
Thus, we have:
∠4+60°=180°       (Linear pair)
⇒∠4=180°−60°=120°∠4=∠1=120°       (Corresponding angles)
∠1=∠2=120°        (Corresponding angles) 
∠3=∠2=120°         (Vertically opposite angles)
Thus,
∠1=∠2=∠3=120° 

The document RD Sharma Solutions (Part - 1) - Ex-14.2, Lines and Angles, Class 7, Math | RD Sharma Solutions for Class 7 Mathematics is a part of the Class 7 Course RD Sharma Solutions for Class 7 Mathematics.
All you need of Class 7 at this link: Class 7
97 docs

Top Courses for Class 7

FAQs on RD Sharma Solutions (Part - 1) - Ex-14.2, Lines and Angles, Class 7, Math - RD Sharma Solutions for Class 7 Mathematics

1. What are the different types of angles in geometry?
Ans. In geometry, there are several types of angles. These include acute angles, which measure less than 90 degrees; right angles, which measure exactly 90 degrees; obtuse angles, which measure more than 90 degrees but less than 180 degrees; and straight angles, which measure exactly 180 degrees.
2. How do you identify alternate angles?
Ans. Alternate angles are formed when a transversal intersects two parallel lines. To identify alternate angles, look for pairs of angles that are on opposite sides of the transversal and between the two parallel lines. These angles will be congruent or equal in measure.
3. What is the difference between supplementary and complementary angles?
Ans. Supplementary angles are two angles that add up to 180 degrees, while complementary angles are two angles that add up to 90 degrees. In other words, if the sum of two angles is 180 degrees, they are supplementary, and if the sum is 90 degrees, they are complementary.
4. How do you find the sum of the interior angles of a polygon?
Ans. The sum of the interior angles of a polygon can be found using the formula: (n-2) x 180 degrees, where n represents the number of sides or vertices of the polygon. For example, a triangle has three sides, so the sum of its interior angles would be (3-2) x 180 = 180 degrees.
5. How do you determine if two lines are parallel?
Ans. Two lines are parallel if they never intersect. One way to determine if two lines are parallel is to check if their corresponding angles are congruent. If the corresponding angles are equal in measure, then the lines are parallel. Another way is to check if a transversal intersects the two lines and forms pairs of alternate angles that are congruent.
Explore Courses for Class 7 exam

Top Courses for Class 7

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Sample Paper

,

Objective type Questions

,

study material

,

Exam

,

Viva Questions

,

Lines and Angles

,

mock tests for examination

,

Class 7

,

shortcuts and tricks

,

Summary

,

RD Sharma Solutions (Part - 1) - Ex-14.2

,

Math | RD Sharma Solutions for Class 7 Mathematics

,

Extra Questions

,

video lectures

,

Math | RD Sharma Solutions for Class 7 Mathematics

,

Semester Notes

,

RD Sharma Solutions (Part - 1) - Ex-14.2

,

pdf

,

Previous Year Questions with Solutions

,

past year papers

,

Class 7

,

Free

,

Class 7

,

MCQs

,

practice quizzes

,

Important questions

,

RD Sharma Solutions (Part - 1) - Ex-14.2

,

ppt

,

Lines and Angles

,

Math | RD Sharma Solutions for Class 7 Mathematics

,

Lines and Angles

;