Class 10 Exam  >  Class 10 Notes  >  Extra Documents, Videos & Tests for Class 10  >  RD Sharma Solutions - Ex-5.3 Trigonometric Ratios, Class 10, Maths

Ex-5.3 Trigonometric Ratios, Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10 PDF Download

Q.1) Evaluate the following : (i) sin20/cos70

Sol (i) : Given that, sin20/cos70

Since sin (90 – Θ) = cosΘ

⇒ sin20/cos70 =  sin(90 − 70)/cos70

⇒ sin20/cos70  =  cos70/cos70

⇒ sin20/cos70  = 1

Therefore sin20/cos70  = 1

 

(ii) cos19/sin71

Sol.(ii): Given that, cos19/sin71

⇒ cos19/sin71  =  cos(90 − 71)/sin71

⇒ cos19/sin71  =  sin71/sin71

⇒ cos19/sin71  = 1

Since cos(90-Θ) = sin Θ

Therefore cos19/sin71  = 1

 

(iii) sin21/cos69

Sol.(iii): Given that, sin21/cos69

Since (90-Θ) = cosΘ

⇒ sin21/cos69  =  sin(90 − 69)/cos69

⇒ sin21/cos69  =  cos69/cos69

⇒ sin21/cos69  = 1

 

(iv) tan10/cot80

Sol.(iv): We are given that, tan10/cot80

Since tan(90-Θ) = cotΘ

⇒ tan10cot80  = tan(90 − 80)/cot80

⇒ tan10/cot80  =

cot80/cot80

⇒ tan10/cot80  = 1

Therefore tan10/cot80  = 1

 

(v) sec11/cosec79

Sol.(v):

Given that, sec11/cosec79

Since sec(90-Θ) = cosecΘ

⇒ sec11/cosec79  =  sec(90 − 79)/cosec79

⇒ sec11/cosec79  =  cosec79/cosec79

⇒ sec11/cosec79  = 1

Therefore sec11/cosec79  = 1

 

Q.2: EVALUATE THE FOLLOWING :

(i) (sin49°/cos41°) +  (cos41°/sin49°)2

Sol.(i):

We have to find: (sin49°/cos41°)2  +  (cos41°/sin49°)2

Since sec70°/cosec20°  +  sin59°/cos31° sin(90° – Θ) = cosΘ and cos(90° – Θ) = sinΘ

So

Ex-5.3 Trigonometric Ratios, Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

= 1 + 1 = 2

So value of (sin49°/cos41°)2  +  (cos41°/sin49°)2 is 2

 

(ii) cos48° – sin42°

Sol.(ii)

We have to find: cos48° – sin42°

Since cos(90° − Θ) = sinΘ.So

cos48° – sin42°  =  cos(90° − 42°) − sin42°

= sin42° – sin42°  = 0

So value of cos48° – sin42° is 0

 

(iii) cot40°/tan50° − 1/2(cos35°/sin55°)

Sol.(iii)

We have to find:

cot40°/tan50° − 1/2(cos35°/sin55°)

Since cot(90° − Θ) = tanΘ and cos(90° − Θ) = sinΘ

Ex-5.3 Trigonometric Ratios, Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

= tan50°/tan50° − 1/2(sin55°/sin55°)

=  1 − 1/2  =  1/2

So value of cot40°/tan50° − 1/2(cos35°/sin55°) is 1/2

 

(iv)(sin27°/cos63°)2 – (cos63°/sin27°)2

Sol(iv)

We have to find: (sin27°/cos63°)2 – (cos63°/sin27°)2

Since sin (90° − Θ) = cosΘ and cos (90° − Θ) = sinΘ

Ex-5.3 Trigonometric Ratios, Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

= (cos63°/cos63°)2 – (sin27°/sin27°)2  = 1-1 = 0

So value of (sin27°/cos63°)2 – (cos63°/sin27°)is 0

 

(v)tan35°/cot55° + cot78°/tan12° − 1

Sol.(v)

We have to find:

tan35°/cot55° + cot78°/tan12° − 1

Since tan (90° − Θ) = cotΘ and cot (90° − Θ) = tanΘ  = 1

So value of tan35°/cot55° + cot78°/tan12°is1

 

(vi) sec70°/cosec20° + sin59°/cos31°

Sol.(vi)

We have to find: sec70°/cosec20° + sin59°/cos31°

Since sec70°/cosec20° + sin59°/cos31°and sec(90° − Θ) = cosecΘ

So

Ex-5.3 Trigonometric Ratios, Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

= cosec20°/cosec20° + cos31°/cos31°  = 1 + 1 = 2

So value of sec70°/cosec20° + sin59°/cos31° is 2

 

(vii) cosec31° − sec59°.

Sol(vii)

We have to find: cosec31° − sec59°

Since cosec(90° − Θ) = secΘ.

So

=  cosec31° − sec59°

=  cosec(90° − 59°) − sec59  = sec59° − sec59°  = 0

So value of cosec31° − sec59° is 0

 

(viii)(sin72° + cos18°) (sin72° − cos18°)

Sol.(viii)

We have to find:  (sin72° + cos18°) (sin72° − cos18°)

Since sin(90° − Θ) = cosΘ,So

(sin72° + cos18°) (sin72° − cos18°) =  (sin72°)2–(cos18°)2

= [sin(90° − 18°)]2 − (cos18°)2

= (cos18°)2– (cos18°)2

= cos218° − cos218°  = 0

So value of (sin72° + cos18°) (sin72° − cos18°) is 0.

 

(ix) sin35°/sin55°–cos35°/cos55°

Sol(ix)

We find :

sin35°/sin55°–cos35°/cos55°

Since sin(90° − Θ) = cosΘ and cos(90° − Θ) = sinΘ

sin35°/sin55°–cos35°/cos55° =  sin(90° − 55°)sin55°–cos(90° − 55°)cos55°  = 1-1 = 0

So value of sin35°/sin55°–cos35°/cos55° is  0

 

(x) tan48°tan23°tan42°tan67°

Sol.(x)

We have to find tan48°tan23°tan42°tan67°

Since tan(90° − Θ) = cotΘ.

So

tan48°tan23°tan42°tan67° =  tan(90° − 42°)tan(90° − 67°)tan42°tan67°

= cot42°cot67°tan42°tan67°

= (tan67°cot67°)(tan42°cot42°)  = 1×1 = 1

So value of tan48°tan23°tan42°tan67° is 1

 

(xi)sec50°sin40° + cos40°cosec50°

Sol.(xi)

We have to find sec50°sin40° + cos40°cosec50°

Since cos(90° − Θ) = sinΘ,sec(90° − Θ) = cosecΘ and sinΘ.cosecΘ = 1.

So

sec50°sin40° + cos40°cosec50°  =  sec(90° − 40°)sin40°  + cos(90° − 50°)cosec50°  = 1 + 1 = 2

So value of sec50°sin40° + cos40°cosec50° is 2.

 

Q.3) Express cos75° + cot75° in terms of angle between 00 and 30°.

Sol. 3 :

Given that: cos75° + cot75°

= cos75° + cot75°

=  cos(90° − 15°) + cot(90° − 15°)

= sin 15° + tan 15°

Hence the correct answer is sin 15° + tan 15°

 

Q.4) If  sin3A = cos(A – 260), where 3A is an acute angle, find the value of A.

Sol.4:

We are given 3A is an acute angle

We have: sin3A = cos(A-26°)

⇒ sin3A = sin(90°-(A-26°))

⇒ sin3A = sin(116°-A)

⇒ 3A = 116°-A

⇒ 4A = 116°

⇒ A = 29°

Hence thecorrect answer is 29°

 

Q.5)If A, B, C are the interior angles of a triangle ABC, prove that,

Ex-5.3 Trigonometric Ratios, Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

Ex-5.3 Trigonometric Ratios, Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

Sol.5:

(i)We have to prove: tanEx-5.3 Trigonometric Ratios, Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10 = cotB/2

Since we know that in triangle ABC

A + B + C = 180

⇒ C + A = 180°-B

Ex-5.3 Trigonometric Ratios, Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

Ex-5.3 Trigonometric Ratios, Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

Hence proved

 

(ii)We have to prove : sinEx-5.3 Trigonometric Ratios, Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10 = cosA/2

Since we know that in triangle ABC

A + B + C = 180

⇒ B + C = 180°-A

Ex-5.3 Trigonometric Ratios, Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10

sinEx-5.3 Trigonometric Ratios, Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10= cosA/2

Hence proved

 

Q.6)Prove that :

(i)tan20°tan35°tan45°tan55°tan70°  = 1

(ii)sin48°.sec48° + cos48°.cosec42°  = 2

(iii) sin70°/cos20° + cosec20°/sec70° − 2cos70°.cosec20° = 0

(iv) cos80°/sin10° + cos59°.cosec31° = 2

 Sol.6:

(i)Therefore

tan20°tan35°tan45°tan55°tan70°

= tan(90°–70°) tan(90°–55°) tan45°tan55°tan70°

= cot70°cot55°tan45°tan55°tan70°

=  (tan70°cot70°)(tan55°cot55°)tan45° 

= 1x1x1 = 1

Hence proved

 

(ii) We will simplify the left hand side

sin48°.sec48° + cos48°.cosec42° = sin48°. sec(90° − 48°)cos48°.cosec(90° − 48°)

= sin48°.cos48° + cos48°.sin48° 

= 1 + 1 = 2

Hence proved

 

(iii) We have,sin70°/cos20° + cosec20°/sec70° − 2cos70°.cosec20° = 0

So we will calculate left hand side

sin70°/cos20° + cosec20°/sec70° − 2cos70°.cosec20° = 0 =  sin70°/cos20° + cos70°sin20° − 2cos70°.cosec(90° − 70°)

Ex-5.3 Trigonometric Ratios, Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10–2cos70°.cosec(90° − 70°)

= cos20°/cos20° + sin20°/sin20° − 2×1  = 1 + 1-2 = 2-2 = 0

Hence proved

 

(iv)We have cos80°/sin10° + cos59°.cosec31° = 2

We will simplify the left hand side

cos80°/sin10° + cos59°.cosec31° =  Ex-5.3 Trigonometric Ratios, Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10 + cos59°.cosec(90° − 59°)

= sin10°/sin10° + cos59°.sec59°  = 1 + 1 = 2

Hence proved.

 

Question 7.

If A,B,C are the interior of triangle ABC , show that

(i) sinEx-5.3 Trigonometric Ratios, Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10 = cosA/2

Sol. 

A + B + C = 1800

B + C = 1800– A/2

LHS = RHS

 

(ii)cos(90° − A/2) = sinA/2

LHS = RHS

 

Question 8

If 2Θ + 45°and30 − Θ are acute angles , find the degree measure of

 Θ satisfying sin(20 + 45°) = cos(30° + Θ)

Sol. Here 20 + 45° = sin(60° + Θ)

We know that ,((90° − Θ) =  cos(Θ)

=  sin(2Θ + 45°) = sin(90° − (30° − Θ))

=  sin(2Θ + 45°) = sin(90° − 30° − Θ)

=  sin(2Θ + 45°) = sin(60° + Θ)

On equating sin of angle of we get,

=   2Θ + 45° = 60° + Θ  =  Θ = 15°

 

Question 9

If Θ is appositive acute angle such that secΘ = csc60° , find

2cos2Θ − 1

Sol. 

We know that, sec(90° − Θ) = csc2Θ

=  sec(Θ) = sec(90° − 60°)

=  Θ = 30°  =  2cos2Θ − 1

=  2cos230 − 1

=  2(√3/2)2 − 1

=  2(3/4) − 1  = (3/2) − 1  =  (1/2)

 

Q10.If sin3Θ = cos(Θ − 6°) where 3ΘandΘ − 6circ acute angles, find the value of Θ.

Sol:     

We have, sin3Θ = cos(Θ − 6°)

cos(90° + 3Θ) = cos(Θ − 6°)

90°–3Θ = Θ–6°

− 3Θ − Θ = 6° − 90°

− 4Θ = 96°

Θ = − 96°/ − 4 = 24°

 

Q11.If sec2A = csc(A − 42°) where 2A  is acute angle, find the value of A.

Sol:we know that sec(90 − 3Theta) = cscΘ

sec2A = sec(90–(A − 42))

sec2A = sec(90–A + 42))

sec2A = sec(132–A))

Now equating both the angles we get

2A = 132 – A

A =   = 132/3

A = 44

The document Ex-5.3 Trigonometric Ratios, Class 10, Maths RD Sharma Solutions | Extra Documents, Videos & Tests for Class 10 is a part of the Class 10 Course Extra Documents, Videos & Tests for Class 10.
All you need of Class 10 at this link: Class 10
5 videos|292 docs|59 tests

Top Courses for Class 10

FAQs on Ex-5.3 Trigonometric Ratios, Class 10, Maths RD Sharma Solutions - Extra Documents, Videos & Tests for Class 10

1. What are the trigonometric ratios in mathematics?
Ans. Trigonometric ratios are ratios of the sides of a right triangle involving one of its acute angles. The three main trigonometric ratios are sine (sin), cosine (cos), and tangent (tan). These ratios help in solving various problems related to triangles and angles.
2. How do you find the value of trigonometric ratios?
Ans. The value of trigonometric ratios can be found using a scientific calculator or trigonometric tables. To find the value of sine, cosine, or tangent of an angle, you need to divide the length of the side opposite that angle by the length of the hypotenuse (in case of sine and cosine) or the length of the side adjacent to that angle (in case of tangent).
3. What is the range of trigonometric ratios?
Ans. The range of trigonometric ratios depends on the angle measure. For sine and cosine, the range is between -1 and 1, inclusive. For tangent, the range extends from negative infinity to positive infinity, excluding any vertical asymptotes.
4. How are trigonometric ratios used in real-life applications?
Ans. Trigonometric ratios have various real-life applications. They are used in navigation and astronomy to calculate distances and angles. They are also used in engineering, architecture, and construction to determine the height and length of structures. Trigonometry is essential in physics and engineering fields to analyze waveforms and oscillations.
5. Can trigonometric ratios be negative?
Ans. Yes, trigonometric ratios can be negative. The sign of the trigonometric ratios depends on the quadrant in which the angle lies. In the first quadrant, all ratios are positive. In the second quadrant, only sine is positive. In the third quadrant, only tangent is positive. In the fourth quadrant, only cosine is positive.
5 videos|292 docs|59 tests
Download as PDF
Explore Courses for Class 10 exam

Top Courses for Class 10

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Important questions

,

shortcuts and tricks

,

Maths RD Sharma Solutions | Extra Documents

,

practice quizzes

,

Maths RD Sharma Solutions | Extra Documents

,

video lectures

,

Videos & Tests for Class 10

,

Maths RD Sharma Solutions | Extra Documents

,

Exam

,

ppt

,

Free

,

Ex-5.3 Trigonometric Ratios

,

Viva Questions

,

Previous Year Questions with Solutions

,

mock tests for examination

,

Videos & Tests for Class 10

,

Semester Notes

,

MCQs

,

pdf

,

Extra Questions

,

past year papers

,

study material

,

Objective type Questions

,

Class 10

,

Sample Paper

,

Ex-5.3 Trigonometric Ratios

,

Class 10

,

Class 10

,

Summary

,

Videos & Tests for Class 10

,

Ex-5.3 Trigonometric Ratios

;