Class 8 Exam  >  Class 8 Notes  >  RD Sharma Solutions for Class 8 Mathematics  >  RD Sharma Solutions for Class 8 Math Chapter 7 - Factorization (Part-4)

RD Sharma Solutions for Class 8 Math Chapter 7 - Factorization (Part-4) | RD Sharma Solutions for Class 8 Mathematics PDF Download

Question 1: Factorize each of the following expressions:
qr − pr + qs − ps

Answer 1: qrpr+qsps  

=(qrpr)+(qsps)  [Grouping the expressions] 
=r(qp)+s(qp) 
=(r+s)(qp)              [Taking (qp) as the common factor] 
Question 2: Factorize each of the following expressions: 
p2q − pr2 − pq + r2 
Answer 2: 
p2qpr2pq+r2 
=(p2qpq)+(r2pr2)   [Grouping the expressions] 
=pq(p1)+r2(1p) 
=pq(p1)r2(p1)      [(1p)=(p1)]=(pqr2)(p1)              [Taking (p1) as the common factor] 
Question 3: Factorize each of the following expressions:
1 + x + xy + x2y 
Answer 3: 1+x+xy+x2y 

=(1+x)+(xy+x2y)   [Grouping the expressions] 
=(1+x)+xy(1+x) 
=(1+xy)(1+x)           [Taking (1+x) as the common factor] 
Question 4: Factorize each of the following expressions: 
ax + ay − bx − by 
Answer 4: ax+aybxby 

=(ax+ay)(bx+by)   [Grouping the expressions] 
= a(x+y)b(x+y) 
= (ab)(x+y)              [Taking (x+y) as the common factor] 
Question 5: Factorize each of the following expressions:
xa2 + xb2 − ya2 − yb2 

Answer 5:
  xa2+xb2ya2yb2 
=(xa2+xb2)(ya2+yb2)   [Grouping the expressions] 
=x(a2+b2)y(a2+b2) 
=(xy)(a2+b2)                   [Taking (a2+b2) as the common factor] 
Question 6: Factorize each of the following expressions:
x2 + xy + xz + yz 

Answer 6: x2+xy+xz+yz 

=(x2+xy)+(xz+yz)   [Grouping the expressions] 
=x(x+y)+z(x+y) 
=(x+z)(x+y)              [Taking (x+y) as the common factor] 
= (x+y)(x+z) 
Question 7: Factorize each of the following expressions:
2ax + bx + 2ay + by
Answer 7: 2ax+bx+2ay+by 

=(2ax+bx)+(2ay+by)   [Grouping the expressions] 
=x(2a+b)+y(2a+b) 
=(x+y)(2a+b)                 [Taking (2a+b) as the common factor] 
Question 8: Factorize each of the following expressions: 
ab − by − ay + y2 
Answer 8: abbyay+y2 

=(abay)+(y2by)              [Grouping the expressions] 
= a(by)+y(yb) 
=a(by)y(by)                  [(yb)=(by)] 
=(ay)(by)                          [Taking (by) as the common factor]
Question 9: Factorize each of the following expressions:
axy + bcxy − az − bcz
Answer 9:
axy+bcxyazbcz 
=(axy+bcxy)(az+bcz)       [Grouping the expressions] 
=xy(a+bc)z(a+bc) 
=(xyz)(a+bc)                       [Taking (a+bc) as the common factor] 
Question 10: Factorize each of the following expressions:
lm2mn2lm + n2
Answer 10: lm2mn2lm+n2=(lm2lm)+(n2mn2)   [Regrouping the expressions] 

= lm(m1)+n2(1m) 
=lm(m1)n2(m1)      [(1m)=(m1)] 
=(lmn2)(m1)               [Taking (m1) as the common factor]
Question 11: Factorize each of the following expressions:
x3y2 + xx2y2
Answer 11: x3y2+xx2y2 

=(x3+x)(x2y2+y2)         [Regrouping the expressions] 
=x(x2+1)y2(x2+1) 
=(xy2)(x2+1)                  [Taking (x2+1) as the common factor] 
Question 12: Factorize each of the following expressions:
6xy + 6 − 9y − 4x
Answer 12: 6xy+69y4x=(6xy4x)+(69y)     [Regrouping the expressions] 

=2x(3y2)+3(23y) 
=2x(3y2)3(3y2)   [(23y)=(3y2)] 
=(2x3)(3y2)             [Taking (3y2) as the common factor] 
Question 13: Factorize each of the following expressions:
x2 − 2ax − 2ab + bx
Answer 13: x22ax2ab+bx 

=(x22ax)+(bx2ab)    [Regrouping the expressions] 
=x(x2a)+b(x2a) 
=(x+b)(x2a)                  [Taking (x2a) as the common factor] 
=(x2a)(x+b) 
Question 14: Factorize each of the following expressions:
x3 − 2x2y + 3xy2 − 6y3 
Answer 14:
x3− 2x2y + 3xy2− 6y3 
=(x32x2y)+(3xy26y3)           [Grouping the expressions] 
=x2(x2y)+3y2(x2y) 
=(x2+3y2)(x2y)                         [Taking (x2y) as the common factor] 
Question 15: Factorize each of the following expression:
abx2 + (ay − b) x − y
Answer 15: 
abx2+(ayb)xy=abx2+axybxy
=(abx2bx)+(axyy)    [Regrouping the expressions] 
=bx(ax1)+y(ax1) 
=(bx+y)(ax1)                [Taking (ax1) as the common factor]
Question 16: Factorize each of the following expression:
(ax + by)2 + (bx − ay)2
Answer 16:
(ax+by)2+(bxay)2=a2x2+2abxy+b2y2+b2x22abxy+a2y2 
=a2x2+b2y2+b2x2+a2y2 
=(a2x2+a2y2)+(b2x2+b2y2)   [Regrouping the expressions] 
=a2(x2+y2)+b2(x2+y2) 
=(a2+b2)(x2+y2)                        [Taking (x2+y2) as the common factor]
Question 17: Factorize each of the following expression:
16(a − b)3 − 24 (a − b)2
Answer 17:
16(ab)324(ab)2 
=8(ab)2[2(ab)3]         {Taking [8(ab)2] as the common factor} 
=8(ab)2(2a2b3) 
Question 18: Factorize each of the following expression:
ab(x2 + 1) + x(a2 + b2)
Answer 18: 
ab(x2+1)+x(a2+b2)=abx2+ab+a2x+b2x 
=(abx2+a2x)+(b2x+ab)   [Regrouping the expressions] 
=ax(bx+a)+b(bx+a) 
=(ax+b)(bx+a)                   [Taking (bx+a) as the common factor] 
Question 19: Factorize each of the following expression:
a2x2 + (ax2 + 1)x + a
Answer 19:
  a2x2+(ax2+1)x+a=a2x2+ax3+x+a
=(ax3+a2x2)+(x+a)   [Regrouping the expressions] 
=ax2(x+a)+(x+a) 
=(ax2+1)(x+a)             [Taking (x+a) as the common factor] 
Question 20: Factorize each of the following expression:
a(a − 2bc) + 2bc
Answer 20: a(a2bc)+2bc=a22abac+2bc 

=(a2ac)+(2bc2ab)             [Regrouping the terms] 
=a(ac)+2b(ca) 
=a(ac)2b(ac)                   [(ca)=(ac)] 
=(a2b)(ac)                            [Taking (ac)  as the common factor]
Question 21: Factorize each of the following expression:
a(a + b − c) − bc
Answer 21: a(a+bc)bc=a2+abacbc 

=(a2ac)+(abbc)   [Regrouping the expressions] 
=a(ac)+b(ac) 
=(a+b)(ac)               [Taking (ac) as the common factor] 
Question 22: Factorize each of the following expression:
x2 − 11xyx + 11y
Answer 22: x211xyx+11y=(x2x)+(11y11xy)   [Regrouping the expressions] 

=x(x1)+11y(1x) 
=x(x1)11y(x1)       [(1x)=(x1)] 
=(x11y)(x1)               [Taking out the common factor (x1)] 
Question 23: Factorize each of the following expression:
ab − a − b + 1
Answer 23: abab+1=(abb)+(1a)   [Regrouping the expressions
]
=b(a1)+(1a)  
=b(a1)(a1)   [(1a)=(a1)] 
=(a1)(b1)         [Taking out the common factor (a1)] 
Question 24: Factorize each of the following expression:
x2 + y − xy − x 
Answer 24: x2+yxyx=(x2xy)+(yx)   

[Regrouping the expressions]
=x(xy)+(yx)
=x(xy)(xy)     [(yx)=(xy)] 
=(x1)(xy)           [Taking (xy) as the common expression]

The document RD Sharma Solutions for Class 8 Math Chapter 7 - Factorization (Part-4) | RD Sharma Solutions for Class 8 Mathematics is a part of the Class 8 Course RD Sharma Solutions for Class 8 Mathematics.
All you need of Class 8 at this link: Class 8
88 docs

Top Courses for Class 8

88 docs
Download as PDF
Explore Courses for Class 8 exam

Top Courses for Class 8

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Objective type Questions

,

Summary

,

video lectures

,

Exam

,

Extra Questions

,

RD Sharma Solutions for Class 8 Math Chapter 7 - Factorization (Part-4) | RD Sharma Solutions for Class 8 Mathematics

,

Previous Year Questions with Solutions

,

MCQs

,

practice quizzes

,

Semester Notes

,

Important questions

,

pdf

,

Free

,

Sample Paper

,

ppt

,

shortcuts and tricks

,

Viva Questions

,

mock tests for examination

,

RD Sharma Solutions for Class 8 Math Chapter 7 - Factorization (Part-4) | RD Sharma Solutions for Class 8 Mathematics

,

study material

,

past year papers

,

RD Sharma Solutions for Class 8 Math Chapter 7 - Factorization (Part-4) | RD Sharma Solutions for Class 8 Mathematics

;