Class 8 Exam  >  Class 8 Notes  >  RD Sharma Solutions for Class 8 Mathematics  >  RD Sharma Solutions - Chapter 3 - Squares and Square Roots (Ex-3.3) - Class 8 Math

Chapter 3 - Squares and Square Roots (Ex-3.3) - Class 8 Math RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics PDF Download

QUESTION 1: FIND THE SQUARES OF THE FOLLOWING NUMBERS USING COLUMN METHOD. VERIFY THE RESULT BY FINDING THE SQUARE USING THE USUAL MULTIPLICATION:
(I) 25
(II) 37
(III) 54
(IV) 71
(V) 96

ANSWER 1: (i) Here, a = 2, b = 5
Step 1. Make 3 columns and write the values of a2, 2 x a x b, and b2 in these columns. 

Column I 
Column II 
Column III 
a2 
2 x a x b 
b2 
42025

Step 2. Underline the unit digit of b2 (in Column III) and add its tens digit, if any, with 2 x a x b (in Column II). 

Column I 
Column II
Column III 
a2 
2 x a x b 
b2 
4 
20 + 2 
25 

22 

Step 3. Underline the unit digit in Column II and add the number formed by the tens and other digits, if any, with a2 in Column I. 

Column I 
Column II 
Column III 
a2 
2 x a x b 
b2 
4 + 2 
20 + 2 
25 
6 
22 

Step 4. Underline the number in Column I.

Column I 
Column II 
Column III 
a2 
2 x a x b 
b2 
4 + 2 
20 + 2 
25 
6 
22 

Step 5. Write the underlined digits at the bottom of each column to obtain the square of the given number.
In this case, we have:
252 = 625
Using multiplication:
Chapter 3 - Squares and Square Roots (Ex-3.3) - Class 8 Math RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

This matches with the result obtained by the column method. 

(ii) Here, a = 3, b = 7
Step 1. Make 3 columns and write the values of a2, 2 x a x b, and b2 in these columns. 

Column I 
Column II 
Column III 
a2 
2 x a x b 
b2 
9 
42 
49 

Step 2. Underline the unit digit of b2 (in Column III) and add its tens digit, if any, with 2 x a x b (in Column II). 

Column I 
Column II 
Column III 
a2 
2 x a x b 
b2 
942+449

46

Step 3. Underline the unit digit in Column II and add the number formed by the tens and other digits, if any, with a2 in Column I. 

Column I 
Column II 
Column III 
a2 
2 x a x b 
b2 
9 + 4 
42 + 4 
49 
13 
46 

Step 4. Underline the number in Column I. 

Column I 
Column II 
Column III 
a2 
2 x a x b 
b2 
9 + 4 
42 + 4 
49
13 46 

Step 5. Write the underlined digits at the bottom of each column to obtain the square of the given number.
In this case, we have:
372 = 1369
Using multiplication: 

Chapter 3 - Squares and Square Roots (Ex-3.3) - Class 8 Math RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

This matches with the result obtained using the column method. 

(iii) Here, a = 5, b = 4
Step 1. Make 3 columns and write the values of a2, 2 x a x b and b2 in these columns. 

Column I 
Column II 
Column III 
a2 
2 x a x b 
b2 
25 
40 
16

Step 2. Underline the unit digit of b2 (in Column III) and add its tens digit, if any, with 2 x a x b (in Column II). 

Column I 
Column II 
Column III 
a2 
2 x a x b 
b2 
25 
40 + 1 
16 

41 

Step 3. Underline the unit digit in Column II and add the number formed by the tens and other digits, if any, with a2 in Column I. 

Column I 
Column II 
Column III 
a2 
2 x a x b 
b2 
25 + 4 
40 + 1 
16 
29 
41 

Step 4. Underline the number in Column I. 

Column I 
Column II 
Column III 
a2 
2 x a x b 
b2 
25 + 4 
40 + 1 
16 
29 
41 

Step 5. Write the underlined digits at the bottom of each column to obtain the square of the given number.
In this case, we have:
542 = 2916
Using multiplication: 

Chapter 3 - Squares and Square Roots (Ex-3.3) - Class 8 Math RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

This matches with the result obtained using the column method. 

(iv) Here, a = 7, b = 1
Step 1. Make 3 columns and write the values of a2, 2 x a x b and b2 in these columns. 

Column I 
Column II 
Column III 
a2 
2 x a x b 
b2 
49141

Step 2. Underline the unit digit of b2 (in Column III) and add its tens digit, if any, with 2 x a x b (in Column II). 

Column I 
Column II 
Column III 
a2 
2 x a x b 
b2 
49 
14 + 0 
1

14

Step 3. Underline the unit digit in Column II and add the number formed by the tens and other digits, if any, with a2 in Column I. 

Column I 
Column II 
Column III 
a2 
2 x a x b 
b2 
49 + 1 
14 + 0 
1
50 
14 

Step 4. Underline the number in Column I. 

Column I 
Column II 
Column III 
a2 
2 x a x b 
b2 
49 + 1 
14 + 0 
1
50 
14 

Step 5. Write the underlined digits at the bottom of each column to obtain the square of the given number.
In this case, we have:
712 = 5041
Using multiplication: 

Chapter 3 - Squares and Square Roots (Ex-3.3) - Class 8 Math RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

This matches with the result obtained using the column method. 

(v) Here, a = 9, b = 6
Step 1. Make 3 columns and write the values of a2, 2 x a x b and b2 in these columns. 

Column I 
Column II 
Column III 
a2 
2 x a x b 
b2 
81 
10836

Step 2. Underline the unit digit of b2 (in Column III) and add its tens digit, if any, with 2 x a x b (in Column II). 

Column I 
Column II 
Column III 
a2 
2 x a x b 
b2 
81 
108 + 3 
36 

111 

Step 3. Underline the unit digit in Column II and add the number formed by the tens and other digits, if any, with a2 in Column I. 

Column I 
Column II 
Column III 
a2 
2 x a x b 
b2 
81 + 11 
108 + 3 
36
92 
111

Step 4. Underline the number in Column I. 

Column I 
Column II 
Column III 
a2 
2 x a x b 
b2 
81 + 11 
108 + 3 
36 
92 
111 

Step 5. Write the underlined digits at the bottom of each column to obtain the square of the given number.
In this case, we have:
962 = 9216
Using multiplication: 

Chapter 3 - Squares and Square Roots (Ex-3.3) - Class 8 Math RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

This matches with the result obtained using the column method. 

Question 2: Find the squares of the following numbers using diagonal method:
(i) 98
(ii) 273
(iii) 348
(iv) 295
(v) 171

Answer 2:

 Chapter 3 - Squares and Square Roots (Ex-3.3) - Class 8 Math RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

∴ 982 = 9604 

Chapter 3 - Squares and Square Roots (Ex-3.3) - Class 8 Math RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

∴ 2732 = 74529 

(iii) 

Chapter 3 - Squares and Square Roots (Ex-3.3) - Class 8 Math RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

∴ 3482 = 121104 

(iv) 

Chapter 3 - Squares and Square Roots (Ex-3.3) - Class 8 Math RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

∴ 2952 = 87025 

(v) 

Chapter 3 - Squares and Square Roots (Ex-3.3) - Class 8 Math RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

∴ 1712 = 29241 

QUESTION 3: FIND THE SQUARES OF THE FOLLOWING NUMBERS:
(I) 127
(II) 503
(III) 451
(IV) 862
(V) 265

ANSWER 3: We will use visual method as it is the most efficient method to solve this problem.
(i) We have:
127 = 120 + 7
Hence, let us draw a square having side 127 units. Let us split it into 120 units and 7 units. 

Chapter 3 - Squares and Square Roots (Ex-3.3) - Class 8 Math RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

Chapter 3 - Squares and Square Roots (Ex-3.3) - Class 8 Math RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

Hence, the square of 127 is 16129. 

(ii) We have:
503 = 500 + 3
Hence, let us draw a square having side 503 units. Let us split it into 500 units and 3 units. 

Chapter 3 - Squares and Square Roots (Ex-3.3) - Class 8 Math RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

Chapter 3 - Squares and Square Roots (Ex-3.3) - Class 8 Math RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

Hence, the square of 503 is 253009.

(iii) We have:
451 = 450 + 1
Hence, let us draw a square having side 451 units. Let us split it into 450 units and 1 units. 

Chapter 3 - Squares and Square Roots (Ex-3.3) - Class 8 Math RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

Chapter 3 - Squares and Square Roots (Ex-3.3) - Class 8 Math RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

Hence, the square of 451 is 203401. 

(iv) We have:
862 = 860 + 2
Hence, let us draw a square having side 862 units. Let us split it into 860 units and 2 units. 

Chapter 3 - Squares and Square Roots (Ex-3.3) - Class 8 Math RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

Chapter 3 - Squares and Square Roots (Ex-3.3) - Class 8 Math RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

Hence, the square of 862 is 743044. 

(v) We have:
265 = 260 + 5
Hence, let us draw a square having side 265 units. Let us split it into 260 units and 5 units. 

Chapter 3 - Squares and Square Roots (Ex-3.3) - Class 8 Math RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

Chapter 3 - Squares and Square Roots (Ex-3.3) - Class 8 Math RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

Hence, the square of 265 is 70225. 

Question 4: Find the squares of the following numbers:
(i) 425
(ii) 575
(iii) 405
(iv) 205
(v) 95
(vi) 745
(vii) 512
(viii) 995

Answer 4: Notice that all numbers except the one in question (vii) has 5 as their respective unit digits. We know that the square of a number with the form n5 is a number ending with 25 and has the number n(+ 1) before 25. Notice that all numbers except the one in question (vii) has 5 as their respective unit digits. We know that the square of a number with the form n5 is a number ending with 25 and has the number n(+ 1) before 25. 

(i) Here, n = 42
n(+ 1) = (42)(43) = 1806
4252 = 180625
(ii) Here, n = 57
n(+ 1) = (57)(58) = 3306
5752 = 330625
(iii) Here n = 40
n(+ 1) = (40)(41) = 1640
4052 = 164025
(iv) Here n = 20
 n(+ 1) = (20)(21) = 420
2052 =  42025
(v) Here n = 9
n(+ 1) = (9)(10) = 90
952 = 9025
(vi) Here n = 74
n(+ 1) = (74)(75) = 5550
7452 = 555025
(vii) We know:
The square of a three-digit number of the form 5ab = (250 + ab)1000 + (ab)2
5122 = (250+12)1000 + (12)2 = 262000 + 144 = 262144
(viii) Here, n = 99
n(+ 1) = (99)(100) = 9900
∴ 9952 = 990025 

Question 5: Find the squares of the following numbers using the identity (a + b)2 = a2 + 2ab + b2:
(i) 405
(ii) 510
(iii) 1001
(iv) 209
(v) 605

Answer 5: (i) On decomposing:
405 = 400 + 5
Here, a = 400 and b = 5
Using the identity (a + b)2 = a2 + 2ab + b2:
4052 = (400 + 5)2 = 4002 + 2(400)(5) + 52 = 160000 + 4000 + 25 = 164025
(ii) On decomposing:
510 = 500 + 10
Here, a = 500 and b = 10
Using the identity (a + b)2 = a2 + 2ab + b2:
5102 = (500 + 10)2 = 5002 + 2(500)(10) + 102 = 250000 + 10000 + 100 = 260100
(iii) On decomposing:
1001 = 1000 + 1
Here, a = 1000 and b = 1
Using the identity (a + b)2 = a2 + 2ab + b2:
10012 = (1000 + 1)2 = 10002 + 2(1000)(1) + 12 = 1000000 + 2000 + 1 = 1002001
(iv) On decomposing:
209 = 200 + 9
Here, a = 200 and b = 9
Using the identity (a + b)2 = a2 + 2ab + b2:
2092 = (200 + 9)2 = 2002 + 2(200)(9) + 92 = 40000 + 3600 + 81 = 43681
(v) On decomposing:
605 = 600 + 5
Here, a = 600 and b = 5
Using the identity (a + b)2 = a2 + 2ab + b2:
6052 = (600 + 5)2 = 6002 + 2(600)(5) + 52 = 360000 + 6000 + 25 = 366025 

Question 6: Find the squares of the following numbers using the identity (ab)2 = a2 − 2ab + b2:
(i) 395
(ii) 995
(iii) 495
(iv) 498
(v) 99
(vi) 999
(vii) 599

Answer 6: (i) Decomposing: 395 = 400 − 5
Here, a = 400 and b = 5
Using the identity (ab)2 = a2 − 2ab + b2:

3952 = (400  5)2 = 400 2(400)(5) + 52 = 160000  4000 + 25 = 156025
(ii) Decomposing: 995 = 1000 − 5
Here, a = 1000 and b = 5
Using the identity (ab)2 = a2 − 2ab + b2:

9952 = (1000 − 5)2 = 1000 2(1000)(5) + 52 = 1000000  10000 + 25 = 990025
(iii) Decomposing: 495 = 500 − 5
Here, a = 500 and b = 5
Using the identity (ab)2 = a2 − 2ab + b2:

4952 = (500  5)2 = 5002  2(500)(5) + 52 = 250000  5000 + 25 = 245025
(iv) Decomposing: 498 = 500 − 2
Here, a = 500 and b = 2
Using the identity (ab)2 = a2 − 2ab + b2:  

4982 = (500  2)2 = 5002  2(500)(2) + 22 = 250000  2000 + 4 = 248004
(v) Decomposing: 99 = 100 − 1
Here, a = 100 and b = 1
Using the identity (ab)2 = a2 − 2ab + b2:

992 = (100 − 1)2 = 1002  2(100)(1) + 12 = 10000  200 + 1 = 9801
(vi) Decomposing: 999 = 1000 - 1
Here, a = 1000 and b = 1
Using the identity (ab)2 = a2 − 2ab + b2:

9992 = (1000  1)2 = 10002  2(1000)(1) + 12 = 1000000  2000 + 1 = 998001
(vii) Decomposing: 599 = 600 − 1
Here, a = 600 and b = 1
Using the identity (ab)2 = a2 − 2ab + b2:

5992 = (600  1)2 = 600 2(600)(1) + 12 = 360000  1200 + 1 = 358801 

Question 7: Find the squares of the following numbers by visual method:
(i) 52
(ii) 95
(iii) 505
(iv) 702
(v) 99

Answer 7: (i) We have:
52 = 50 + 2
Let us draw a square having side 52 units. Let us split it into 50 units and 2 units. 

Chapter 3 - Squares and Square Roots (Ex-3.3) - Class 8 Math RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

The sum of the areas of these four parts is the square of 52. Thus, the square of 52 is 2704.
(ii) We have:
95 = 90 + 5
Let us draw a square having side 95 units. Let us split it into 90 units and 5 units. 

Chapter 3 - Squares and Square Roots (Ex-3.3) - Class 8 Math RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

The sum of the areas of these four parts is the square of 95. Thus, the square of 95 is 9025.
(iii) We have:
505 = 500 + 5
Let us draw a square having side 505 units. Let us split it into 500 units and 5 units. 

Chapter 3 - Squares and Square Roots (Ex-3.3) - Class 8 Math RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

The sum of the areas of these four parts is the square of 505. Thus, the square of 505 is 255025. 

(iv) We have:
702 = 700 + 2
Let us draw a square having side 702 units. Let us split it into 700 units and 2 units. 

Chapter 3 - Squares and Square Roots (Ex-3.3) - Class 8 Math RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

The sum of the areas of these four parts is the square of 702. Thus, the square of 702 is 492804. 

(v) We have:
99 = 90 + 9
Let us draw a square having side 99 units. Let us split it into 90 units and 9 units.
Chapter 3 - Squares and Square Roots (Ex-3.3) - Class 8 Math RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

The sum of the areas of these four parts is the square of 99. Thus, the square of 99 is 9801.

The document Chapter 3 - Squares and Square Roots (Ex-3.3) - Class 8 Math RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics is a part of the Class 8 Course RD Sharma Solutions for Class 8 Mathematics.
All you need of Class 8 at this link: Class 8
88 docs

Top Courses for Class 8

FAQs on Chapter 3 - Squares and Square Roots (Ex-3.3) - Class 8 Math RD Sharma Solutions - RD Sharma Solutions for Class 8 Mathematics

1. What is the definition of a perfect square?
Ans. A perfect square is a number that can be expressed as the square of an integer. In other words, it is the product of an integer multiplied by itself.
2. How can I find the square root of a perfect square?
Ans. To find the square root of a perfect square, you can either factorize the number and take the square root of each factor or use the long division method. For example, to find the square root of 25, you can factorize it as 5 * 5 and take the square root of each factor, which is 5.
3. Can a non-perfect square have a whole number square root?
Ans. No, a non-perfect square cannot have a whole number square root. If a number is not a perfect square, its square root will be an irrational number, which cannot be expressed as a simple fraction or whole number.
4. Is every positive integer a perfect square?
Ans. No, not every positive integer is a perfect square. Only numbers that can be expressed as the square of an integer are perfect squares. For example, 2, 3, 5, and 7 are not perfect squares.
5. How can I determine if a number is a perfect square without calculating its square root?
Ans. You can determine if a number is a perfect square without calculating its square root by checking its digital root. If the digital root is equal to 1, 4, 7, or 9, then the number is a perfect square. For example, the digital root of 16 is 1+6=7, which is one of the perfect square digital roots.
88 docs
Download as PDF
Explore Courses for Class 8 exam

Top Courses for Class 8

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Previous Year Questions with Solutions

,

Semester Notes

,

shortcuts and tricks

,

video lectures

,

MCQs

,

ppt

,

Chapter 3 - Squares and Square Roots (Ex-3.3) - Class 8 Math RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

,

Summary

,

Viva Questions

,

Chapter 3 - Squares and Square Roots (Ex-3.3) - Class 8 Math RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

,

practice quizzes

,

pdf

,

Free

,

study material

,

Extra Questions

,

Exam

,

Important questions

,

Sample Paper

,

Objective type Questions

,

past year papers

,

Chapter 3 - Squares and Square Roots (Ex-3.3) - Class 8 Math RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

,

mock tests for examination

;