Class 11 Exam  >  Class 11 Notes  >  Document for markovnikov's rule

Document for markovnikov's rule - Class 11 PDF Download


Ref: https://edurev.in/question/807611/Needed-a-Document-for-markovnikov-s-rule-Related-Lewis-Symbols-and-Octet-Rule-Chemical-Bonding-and-M

Explanation.

The rule states that with the addition of a protic acid HX to an asymmetric alkene, the acid hydrogen (H) gets attached to the carbon with more hydrogen substituents, and the halide(X) group gets attached to the carbon with more alkyl substituents. Alternatively, the rule can be stated that the hydrogen atom is added to the carbon with the greatest number of hydrogen atoms while the X component is added to the carbon with the least number of hydrogen atoms.[3]

The same is true when an alkene reacts with water in an addition reaction to form an alcohol which involve formation of carbocations. The hydroxyl group (OH) bonds to the carbon that has the greater number of carbon–carbon bonds, while the hydrogen bonds to the carbon on the other end of the double bond, that has more carbon–hydrogen bonds.

The chemical basis for Markovnikov's Rule is the formation of the most stable carbocation during the addition process. The addition of the hydrogen ion to one carbon atom in the alkene creates a positive charge on the other carbon, forming a carbocation intermediate. The more substituted the carbocation, the more stable it is, due to induction and hyperconjugation. The major product of the addition reaction will be the one formed from the more stable intermediate. Therefore, the major product of the addition of HX (where X is some atom more electronegative than H) to an alkene has the hydrogen atom in the less substituted position and X in the more substituted position. But the other less substituted, less stable carbocation will still be formed at some concentration, and will proceed to be the minor product with the opposite, conjugate attachment of X.

Anti-Markovnikov reactions.

Mechanisms that do not involve a carbocation intermediate may react through other mechanisms that have other regioselectivities not dictated by Markovnikov's rule, such as free radical addition. Such reactions are said to be anti-Markovnikov, since the halogen adds to the less substituted carbon, the opposite of a Markovnikov reaction. Similar to a positive charged species, the radical species is most stable when the unpaired electron is in the more substituted position. The anti-Markovnikov rule can be illustrated using the addition of hydrogen bromide to propene in the presence of benzoyl peroxide. The reaction of HBr with substituted alkenes was prototypical in the study of free-radical additions. Early chemists discovered that the reason for the variability in the ratio of Markovnikov to anti-Markovnikov reaction products was due to the unexpected presence of free radical ionizing substances such as peroxides. The explanation is that HBr produces a Br radical, which then reacts with the double bond. Since the bromine atom is relatively large, it is more likely to encounter and react with the least substituted carbon since this interaction procedure less static interactions between the carbon and the bromine radical. In this case the terminal carbon is a reactant which produces a primary addition product instead of a secondary addition product, in the case of propene.

A new method of anti-Markovnikov addition has been described by Hamilton and Nicewicz, who utilize aromatic molecules and light energy from a low-energy diode to turn the alkene into a cation radical.

Anti-Markovnikov behaviour extends to more chemical reactions than additions to alkenes. Anti-Markovnikov behaviour is observed in the hydration of phenylacetylene by auric catalysis, which gives acetophenone; although with a special ruthenium catalyst[6] it provides the other regioisomer 2-phenylacetaldehyde:

Document for markovnikov`s rule - Class 11

Anti-Markovnikov behavior can also manifest itself in certain rearrangement reactions. In a titanium(IV) chloride-catalyzed formal nucleophilic substitution at enantiopure 1 in the scheme below, two products are formed – 2a and 2b. Due to the two chiral centers in the target molecule, the carbon carrying chlorine and the carbon carrying the methyl and acetoxyethyl group, four different compounds are to be formed: 1R,2R- (drawn as 2b) 1R,2S- 1S,2R- (drawn as 2a) and 1S,2S- . Therefore, both of the depicted structures will exist in a D- and an L-form. :

Document for markovnikov`s rule - Class 11

This product distribution can be rationalized by assuming that loss of the hydroxy group in 1 gives the tertiary carbocation A, which rearranges to the seemingly less stable secondary carbocation B. Chlorine can approach this center from two faces leading to the observed mixture of isomers.

Another notable example of anti-Markovnikov addition is hydroboration.

The document Document for markovnikov's rule - Class 11 is a part of Class 11 category.
All you need of Class 11 at this link: Class 11

Top Courses for Class 11

FAQs on Document for markovnikov's rule - Class 11

1. What is Markovnikov's rule?
Ans. Markovnikov's rule is a concept in organic chemistry that predicts the regioselectivity of certain addition reactions to unsymmetrical alkenes or alkynes. According to this rule, in the addition of a protic acid (such as HCl or HBr) to an unsymmetrical alkene, the hydrogen atom of the acid adds to the carbon atom that already has the greater number of hydrogen atoms.
2. How does Markovnikov's rule explain the addition of a protic acid to an unsymmetrical alkene?
Ans. Markovnikov's rule explains that when a protic acid adds to an unsymmetrical alkene, the hydrogen atom of the acid attaches itself to the carbon atom of the alkene that already has more hydrogen atoms bonded to it. This preference occurs because the intermediate carbocation formed during the addition is stabilized by the surrounding alkyl groups, leading to a more stable overall product.
3. Can you provide an example of an addition reaction that follows Markovnikov's rule?
Ans. Sure! Let's consider the addition of HBr to propene (CH3CH=CH2). According to Markovnikov's rule, the hydrogen atom of HBr should add to the carbon atom that already has more hydrogen atoms. Thus, the final product will be CH3CH2CH2Br, with the bromine atom attached to the second carbon atom.
4. Are there any exceptions to Markovnikov's rule?
Ans. Yes, there are exceptions to Markovnikov's rule. One of the notable exceptions is the addition of hydrobromic acid (HBr) to alkenes in the presence of peroxides (ROOR). In this case, the reaction follows an anti-Markovnikov addition, where the hydrogen atom adds to the carbon atom with fewer hydrogen atoms. This is known as the peroxide effect.
5. How is Markovnikov's rule relevant in organic synthesis?
Ans. Markovnikov's rule is highly relevant in organic synthesis as it helps chemists predict and control the regioselectivity of addition reactions. By understanding which carbon atom the hydrogen atom will attach to, chemists can strategically design reactions to synthesize specific target molecules with desired functional groups. This rule allows for the selective formation of particular products, making it an essential tool in the field of organic chemistry.
Download as PDF
Explore Courses for Class 11 exam

Top Courses for Class 11

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Previous Year Questions with Solutions

,

Extra Questions

,

practice quizzes

,

study material

,

shortcuts and tricks

,

pdf

,

Exam

,

Important questions

,

Document for markovnikov's rule - Class 11

,

mock tests for examination

,

Document for markovnikov's rule - Class 11

,

Free

,

Sample Paper

,

ppt

,

Viva Questions

,

MCQs

,

Document for markovnikov's rule - Class 11

,

Semester Notes

,

video lectures

,

Summary

,

Objective type Questions

,

past year papers

;