Class 10 Exam  >  Class 10 Notes  >  Mathematics (Maths) Class 10  >  HOTS Questions: Pair of Linear Equations in Two Variables

Class 10 Maths Chapter 3 HOTS Questions - Pair of Linear Equations in Two Variables

Q1. If two of the roots of f(x) = x3 – 5x2 – 16x + 80 are equal in magnitude but opposite in sign, then find all of its zeroes.

Sol: Let α and β are the two zeroes which are equal in magnitude but opposite in sign.
∴ α + β = 0
(Let the third zero is γ)
Sum of zeroes of
f(x)= α + β + γ =  -(-5)1 = 5
∴ γ = 5  [α + β = 0]
Product of zeroes

= αβγ = -801 ⇒ 5 × αβ = -80 [∵ γ = 5]

∴  αβ = -805 = -16

⇒ – α2 = –16 [α + β = 0 ⇒ β = – α]

⇒ α2 = 16 ⇒ α = ± 4

α = ± 4 ⇒ β = ∓ 4    

[∴ β = –α]

Thus, the zeroes are : [± 4, ∓ 4, and 5]

Q2. Solve : 

3x + 2y = 13

5x - 3y = 9

Sol : Given equations:

3x + 2y = 13

5x - 3y = 9

Let 1x = p and 1y = q

The equations become:

3p + 2q = 13 ...(i)

5p - 3q = 9 ...(ii)

From equation (i):

2q = 13 - 3p

q = 13 - 3p2

Substitute q into equation (ii):

5p - 3( 13 - 3p2 ) = 9

Multiply through by 2 to eliminate the fraction:

10p - (39 - 9p) = 18

19p = 57

p = 3

Solve for q:

q = 13 - 92 = 42 = 2

Back-substitute for x and y:

x = 1p = 13

y = 1q = 12

Final Answer:

x = 13 , y = 12


Q3. Solve :

8x + 2y + 32x − y = 3

12x + 2y62x − y = 1

Hint: Put x + 2y = p and 2x – y = q

Sol:  Given equations:
8x + 2y32x - y = 3
12x + 2y - 62x - y = 1

Let:
x + 2y = p, 2x - y = q

Substituting:
8p3q = 3 ...(1)
12p - 6q = 1  ...(2)

Eliminating fractions:
8q + 3p = 3pq  ...(3)
12q - 6p = pq  ...(4)

From (4):
pq = 12q - 6p

Substitute pq in (3):
8q + 3p = 3(12q - 6p)
8q + 3p = 36q - 18p
21p = 28q
p = 4q3

Substitute p into (1):
8p3q = 3
6q3q = 3
q = 3

Substitute q = 3 into p:
p = 4 × 33 = 4

Back-substitute:
x + 2y = 4, 2x - y = 3
Solving gives: x = 2, y = 1

Final Answer: x = 2, y = 1


Q4. Solve : x + y = 18 ; y + z  = 12 ;  z + x = 16.
Sol: Adding the three equations, we get
Class 10 Maths Chapter 3 HOTS Questions - Pair of Linear Equations in Two Variables
⇒ x + y + z  = 23
Now, (x + y + z = 23) – (x + y = 18)
⇒ z = 5 (x + y + z = 23) – (y + z = 12)
⇒ x = 11 (x + y + z = 23) – (z + x = 16)
⇒ y = 7  
Thus, x = 11, y = 7 and z = 5

Q5. Solve :  xyx + y = 43 , yzy + z = 125 , zxz + x = 32
Sol: Inverting the equations:

x + yxy = 341x + 1y = 34 ...(1)

y + zyz = 5121y + 1z = 512 ...(2)

z + xzx = 231z + 1x = 23 ...(3)

Adding (1), (2) and (3), we get

2x + 2y + 2z = 34 + 512 + 23 = 2212 = 116 

1x + 1y + 1z1112 ...(4)
Now, subtracting (1), (2) and (3) turn by turn from (4), we get x = 2, y = 4 and z = 6

Q6. Solve: x + y − 32 = x + 2y − 43 = 3x + y11
Sol: 
From x + y − 32 = 3x + y11
⇒ 11(x + y – 3) = 2(3x + y) ⇒ 5x + 9y = 33    ...(1)
From x + 2y − 43 = 3x + y11
⇒ 11(x + 2y – 4) = 3(3x + y)
⇒ 2x + 9y = 44        ...(2)
Solving (1) and (2), we get x = 3 and y = 2

The document Class 10 Maths Chapter 3 HOTS Questions - Pair of Linear Equations in Two Variables is a part of the Class 10 Course Mathematics (Maths) Class 10.
All you need of Class 10 at this link: Class 10
126 videos|457 docs|75 tests

Top Courses for Class 10

FAQs on Class 10 Maths Chapter 3 HOTS Questions - Pair of Linear Equations in Two Variables

1. What are the methods to solve a pair of linear equations in two variables?
Ans.The methods to solve a pair of linear equations in two variables include the substitution method, elimination method, and graphical method. In the substitution method, one equation is solved for one variable, and that expression is substituted into the other equation. In the elimination method, the equations are manipulated to eliminate one variable, allowing for direct solving of the other variable. The graphical method involves plotting both equations on a graph to find their point of intersection, which represents the solution.
2. How do you determine if a pair of linear equations has no solution, one solution, or infinitely many solutions?
Ans.A pair of linear equations can be analyzed based on their slopes and intercepts. If the equations represent two parallel lines, they have no solution (inconsistent). If they intersect at a single point, they have one solution (independent). If they are the same line (coincident), they have infinitely many solutions (dependent). This can be checked by comparing the ratios of the coefficients of the variables and the constant terms.
3. Can you explain the graphical representation of a pair of linear equations?
Ans.The graphical representation of a pair of linear equations involves plotting each equation on a coordinate plane. The x-axis and y-axis represent the two variables. The point where the two lines intersect indicates the solution of the equations. If the lines are parallel, they will never intersect, indicating no solution. If they coincide, they overlap completely, indicating infinitely many solutions.
4. What are the real-life applications of solving pairs of linear equations?
Ans.Solving pairs of linear equations has several real-life applications, such as in business for profit and loss calculations, in physics for motion and forces, and in finance for budgeting and investment planning. For example, if a business wants to determine the optimal price and quantity to maximize profits, they can use linear equations to model the relationship between price, demand, and revenue.
5. How can you solve a pair of linear equations using the elimination method step by step?
Ans.To solve a pair of linear equations using the elimination method, follow these steps: 1. Write down the equations in standard form (Ax + By = C). 2. Multiply one or both equations by suitable numbers so that the coefficients of one of the variables are the same or opposites. 3. Add or subtract the equations to eliminate that variable. 4. Solve for the remaining variable. 5. Substitute the value of the solved variable back into one of the original equations to find the value of the other variable. 6. Check the solution by substituting both values back into the original equations.
126 videos|457 docs|75 tests
Download as PDF
Explore Courses for Class 10 exam

Top Courses for Class 10

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Class 10 Maths Chapter 3 HOTS Questions - Pair of Linear Equations in Two Variables

,

study material

,

shortcuts and tricks

,

Exam

,

Free

,

Summary

,

Extra Questions

,

mock tests for examination

,

Objective type Questions

,

MCQs

,

Sample Paper

,

Semester Notes

,

Class 10 Maths Chapter 3 HOTS Questions - Pair of Linear Equations in Two Variables

,

Viva Questions

,

Previous Year Questions with Solutions

,

pdf

,

past year papers

,

video lectures

,

ppt

,

practice quizzes

,

Important questions

,

Class 10 Maths Chapter 3 HOTS Questions - Pair of Linear Equations in Two Variables

;