Class 10 Exam  >  Class 10 Notes  >  Mathematics (Maths) Class 10  >  Previous Year Questions: Introduction to Trigonometry

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry

Previous Year Questions 2024

Q1: If sin α = √3/2 , cos β = √3/2 then tan α. tan β is:     (CBSE 2024)
(a) √3
(b) 1/√3
(c) 1
(d) 0

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: (c)
sin α = √3/2, ⇒ sin α  = sin 60º
⇒ α = 60º
∵ cos β = √3/2, 
⇒ cos β = cos 30º 
⇒ β = 30º 
tan α. tan β = tan 60º. tan 30º
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry

= 1


Q2: Evaluate: Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry        (CBSE 2024)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans:
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry


Q3: Prove that: (cosec θ – sin θ) (sec θ – cos θ) (tan θ + cot θ) = 1     (CBSE 2024)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans:
L.H.S. = (cosec θ – sin θ) (sec θ – cos θ) (tan θ + cot θ)
= (cosec θ – sin θ) (sec θ – cos θ) (tan θ + cot θ)
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
= 1 = R.H.S.
Hence, proved.

Previous Year Questions 2023

Q4: If 2 tan A = 3, then find the value of Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry is  (2023)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans:
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Hence, the answer is 1.


Q5: [5/8 sec260° - tan260° + cos245° is equal to    (2023)
(a) 5/3
(b) -1/2
(c) 0
(d) -1/4

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: (c)
Sol:
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry 


Q6: Evaluate 2 sec2θ + 3 cosec2θ - 2 sin θ cos θ if θ = 45°  (CBSE 2023)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: Since θ = 45°, sec 45° = √2, cosec 45° = √2, sin 45° = 1/√2 cos 45° = 1/√2
2sec2 θ + 3 cosec2 θ – 2 sin θ cos θ
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
= 4 + 6 – 1 = 9


Q7: Which of the following is true for all values of θ(0o ≤ θ ≤ 90o)? (2023)
(a) 
cos2θ - sin2θ - 1
(b) 
cosec2θ - sec2θ- 1
(c) 
sec2θ - tan2θ - 1
(d) 
cot2θ- tan2θ = 1

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: (c)


Q8: If sinθ +cosθ = √3. then find the value of sinθ . cosθ.  (2023)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: Given, sinθ +cosθ = √3
Squaring both sides, we get (sinθ + corsθ)2 = 3
⇒ sin2θ + cos2θ + 2sinθ cosθ = 3
⇒ 2sinθ cosθ = 3 - 1     ( ∵ sin2θ + cos2θ = 1)
⇒ 2sinθ cosθ = 2
⇒  sinθ cosθ = 1


Q9: If  sin α = 1/√2 and cot β = √3, then find the value of cosec α + cosec β.  (2023)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: Given, sin α = 1/√2 and cot β = √3
We know that, cosec α = 1/sinα = √2
Also, 1 + cot2β = cosec2β
⇒ cosec2β = 4
⇒ cosec β = 4
Now, cosec α + cosec β = √2 + 2


Q10: Prove that the Following Identities: Sec A (1 + Sin A) ( Sec A - tan A) = 1  (2023)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: LHS = sec A(1 + sin A )( sec A - tan A)
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
= 1
= RHS
Hence proved..


Q11: (secθ – 1) (cosec2 θ – 1) is equal to: 
(a) –1 
(b) 1 
(c) 0 
(d) 2 (CBSE 2023)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: (b)
(sec2 θ – 1) (cosec2 θ – 1) = tan2 θ.cot2 θ  Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry

= Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry

= 1


Q12: If sin θ – cos θ =  0,     then find the value of sin4 θ + cos4 θ. (CBSE 2023)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: Given, 
sin θ – cos θ = 0 
sin θ = cos θ tan θ = 1 
tan θ = tan 45° 
⇒ θ = 45° 
Now, sin4 θ + cos4 θ = sin45° + cos45°
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry


Q13: Prove that Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  (CBSE 2023)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry

= tan A
= RHS

Previous Year Questions 2022

Q14: Given that cos θ = √3/2, then the value of  Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry is  (2022)
(a) -1
(b) 1
(c) 1/2
(d) -1/2

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: (c)
Sol:
Given, cosθ = √3/2  = B/H
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Let B = √3k and H = 2k
∴ Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry [By Pythagoras Theorem]
⇒√k2 = k
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry


Q15: Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry is equal to   (2022)
(a) 0
(b) 1
(c) sinθ + cosθ
(d) sinθ - cosθ

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: (c)
Sol: We have,
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry


Q16: The value of θ for which 2 sin2θ = 1, is   (2022)
(a) 15° 
(b) 30°
(c) 45° 
(d) 60°

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: (a)
Sol: Given, 2 sin2θ = 1 ⇒ sin2θ = 1/2
⇒ 2θ = 30°
⇒ θ = 15°


Q17: If sin2θ + sinθ = 1, then find the value of cos2θ + cos4θ is   (2022)
(a) -1
(b) 1
(c) 0
(d) 2

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: (b)
Sol: Given, sin2θ + sinθ = 1 ---(i)
sinθ = 1 - sin2θ
⇒ sinθ = cos2θ ---(ii)
∴ cos2θ + cos4θ
= sinθ + sin2θ [From (ii)]
= 1        [From (i)]

Previous Year Questions 2021

Q18: If 3 sin A = 1. then find the value of sec A.    (2021 C)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: We have, 3 sin A = 1
∴ sin A = 1/3
Now by using cosA = 1 - sin2 A, we get
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry


Q19: Show that: Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry    (2021 C)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: We have, L.H.S.
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
[By using 1 + tan2θ = sec2θ and 1 + cot2 θ = cosec2θ ]
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Hence,
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry

Previous Year Questions 2020

Q20: If sin θ = cos θ, then the value of tan2 θ + cot2 θ is (2020)
(a) 2
(b) 4
(c) 1
(d) 10/3

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: (a)
Sol: We have, sin θ = cos θ
or sin θ / cos θ = 1
⇒ tan θ = 1 and cot θ = 1     [∵ cot θ = 1/tanθ]
∴ tanθ + cotθ = 1 + 1 = 2
Hence, A option is correct.


Q21: Given 15 cot A = 8, then find the values of sin A and sec A.    (2020)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: In right angle ΔABC we have
15 cot A = 8
⇒ cot A = 8/15
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Since, cot A = AB/BC
∴ AB/BC = 8/15
Let AB = 8k and BC = 15k
By using Pythagoras theorem, we get
AC= AB2 + BC2
⇒ (8k)2 + (15)2 = 64k2 + 225k2 = 289k2 = (17k)
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
So, sec A = 1/cosA = 17/8


Q22: Write the value of sin2 30° + cos2 60°.     (2020)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans:  We have, sin2 30° + cos2 60°
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry


Q23: The distance between the points (a cos θ + b sin θ, 0) and (0, a sin θ − b cos θ) is      (2020)
(a) a+ b2
(b) a + b
(c) Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
(d) Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: (c)
Sol: Given the point A (cos θ + b sin θ , 0), (0 , a sin θ − b cos θ)
By distance formula,
The distance of
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
[∵ cos2θ + sin2θ = 1]


Q24: 5 tan2θ - 5 sec2θ = ____________.    (2020)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: We have 5(tan2θ - sec2θ)
= 5(-1) = - 5 [By using 1 + tan2θ = sec2 θ ⇒ tan2θ - sec2θ = - 1]


Q25: If sinθ + cosθ = √3. then prove that tan θ + cot θ = 1    (2020)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: sin θ + cos θ =√3
= (sinθ + cosθ)= 3
= sin2 θ + cos2 θ + 2sin θ cos θ = 3
⇒ 2sin θ cos θ = 2
⇒ sin θ cos θ = 1
⇒ sin θ cos θ = sin2θ + cos2θ
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
⇒ tan θ + cot θ = 1


Q26: If x = a sinθ and y = b cosθ , write the value of (b2x2 + a2y2). (CBSE 2020)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: Given, x = a sin θ and 
y = b cos θ 
b2x2 + a2y2 = b2(a2 sin2 θ) + a2(b2 cos2 θ) 
= a2b2 [sin2 θ + cos2 θ] 
= a2b2 [sin2θ + cos2θ = 1]


Q27: Prove that: 2 (sin6 θ + cos6 θ) – 3 (sin4 θ + cos4 θ) + 1 = 0. (CBSE 2020)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: We know that, 
sin2 θ + cos2 θ = 1 
So, (sin2 θ + cos2 θ) 2 = 12 
⇒ sin4 θ + cosθ + 2sin2 θ cos2 θ = 1 
i.e., sin4 θ + cos4 θ = 1 – 2 sin2 θ cos2 θ …(i) 
Also, (sin2 θ + cos2 θ) 3 = 13 
⇒ sin6 θ + cos6 θ + 3 sin2 θ cos2 θ (sin2 θ + cos2 θ) = 1 
⇒ sin6 θ+ cos6 θ+ 3sin2 θ cos2 θ (1) = 1 
i.e., sin6 θ + cos6 θ = 1 – 3 sin2 θ cos2 θ …(ii) 
Now, 
LHS = 2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) + 1 
= 2(1 – 3 sin2 θ cos2 θ) – 3(1 – 2 sin2 θ cos2 θ) + 1 
= 2 – 3 + 1 
= 0 
Hence, proved.


Q28: Prove that: (sin4 θ – cos4 θ + 1) cosec2 θ = 2.  [CBSE 2020].

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: L.H.S. = (sin4 θ – cos4 θ + 1) cosec2 θ 
= [(sin2 θ + cos2 θ) (sin2 θ – cos2 θ) + 1] cosec2 θ 
[(1) (sin2 θ – cos2 θ) + 1] cosec2 q [ sin2 θ + cos2 θ = 1] 
= [sin2 θ + (1 – cos2 θ)] cosec2 θ 
= (sinθ + sin2 θ) cosec2θ
= (2 sin2 θ) cosec2 θ
= Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry

= 2 × 1
= 2 = R.H.S.
Hence, proved.

Previous Year Questions 2019

Q29: If sin x + cos y = 1, x = 30° and y is acute angle, find the value of y.    (2019)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: Given,
⇒ sin x + cos y = 1
⇒ sin 30° + cos y = 1
⇒ 1/2 + cos y = 1
⇒ cos y = 1 - 1/2
⇒ cos y = 1/2
⇒ cos y = cos 60°.
Hence, y = 60°.


Q30: If cosec2 θ (cos θ - 1)(1 + cos θ) = k, then what is the value of k?   (2019)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans:  Given:
cosec2 θ (cos θ - 1)(1 + cos θ) = k
Concept used:
Cosec α = 1/Sin α
Sin2 α + Cos2 α = 1
(a + b)(a - b) = a2 - b2
Calculation:
cosec2 θ (cos θ - 1)(1 + cos θ) = k
⇒ cosec2 θ (1 - cos θ)(1 + cos θ) = -k
⇒ cosec2 θ (1 - cos2 θ) = -k
⇒ cosec2 θ × sin2 θ = -k
⇒ 1 = -k
⇒ k = -1
∴ The value of k is (-1).


Q31: The value of ( 1 + cot A − cosec A ) ( 1 + tan A + sec A ) is

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: 
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry

Previous Year Questions 2013

Q32: If sec θ + tan θ + 1 = 0, then sec θ – tan θ is: 
(a) –1 
(b) 1 
(c) 0 
(d) 2  (CBSE 2013)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: (a)
Given: sec θ + tan θ + 1 = 0
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometrysecθ+tanθ+1=0

secθ+tanθ+1=0

secθ+tanθ=1

Multiplying and dividing LHS by sec θ – tan θsecθtanθ, we get

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry

(secθ+tanθ)×(secθtanθsecθtanθ)=1

(sec2θtan2θsecθtanθ)=1

(1+tan2θtan2θsecθtanθ)=1(sec2θ=1+tan2θ)

(1secθtanθ)=1

(secθtanθ)=Hence, the correct option is (a).

The document Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry is a part of the Class 10 Course Mathematics (Maths) Class 10.
All you need of Class 10 at this link: Class 10
123 videos|457 docs|77 tests

Top Courses for Class 10

FAQs on Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry

1. What are the basic trigonometric ratios used in Grade 10?
Ans.The basic trigonometric ratios are sine (sin), cosine (cos), and tangent (tan). These ratios are defined as follows for a right triangle: - Sin(θ) = Opposite side / Hypotenuse - Cos(θ) = Adjacent side / Hypotenuse - Tan(θ) = Opposite side / Adjacent side.
2. How do I remember the trigonometric ratios for different angles?
Ans.A common method to remember trigonometric ratios for standard angles (0°, 30°, 45°, 60°, 90°) is to use the mnemonic "All Students Take Calculus," which helps to remember which ratios are positive in each quadrant. Additionally, creating a table of values for each angle can also be helpful for quick reference.
3. What is the Pythagorean identity in trigonometry?
Ans.The Pythagorean identity states that for any angle θ, the following equation holds true: sin²(θ) + cos²(θ) = 1. This identity is fundamental in trigonometry and can be used to derive other identities and solve problems involving trigonometric functions.
4. How can I solve trigonometric equations in Grade 10?
Ans.To solve trigonometric equations, first, isolate the trigonometric function on one side of the equation. Then, use inverse trigonometric functions to find the angle, and check for any additional solutions within the given domain. It may also help to use trigonometric identities to simplify the equation.
5. What real-life applications are there for trigonometry learned in Grade 10?
Ans.Trigonometry has numerous real-life applications, including in fields such as architecture, engineering, and physics. It is used to calculate heights and distances, in navigation, and in designing structures. Understanding trigonometric principles helps in solving practical problems involving angles and measurements.
123 videos|457 docs|77 tests
Download as PDF
Explore Courses for Class 10 exam

Top Courses for Class 10

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

MCQs

,

video lectures

,

Important questions

,

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry

,

practice quizzes

,

Semester Notes

,

past year papers

,

Sample Paper

,

ppt

,

Viva Questions

,

shortcuts and tricks

,

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry

,

Previous Year Questions with Solutions

,

pdf

,

Free

,

Objective type Questions

,

mock tests for examination

,

study material

,

Exam

,

Extra Questions

,

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry

,

Summary

;